Shortcuts

Source code for torchvision.datasets.imagenet

import os
import shutil
import tempfile
from contextlib import contextmanager
from typing import Any, Dict, Iterator, List, Optional, Tuple

import torch

from .folder import ImageFolder
from .utils import check_integrity, extract_archive, verify_str_arg

ARCHIVE_META = {
    "train": ("ILSVRC2012_img_train.tar", "1d675b47d978889d74fa0da5fadfb00e"),
    "val": ("ILSVRC2012_img_val.tar", "29b22e2961454d5413ddabcf34fc5622"),
    "devkit": ("ILSVRC2012_devkit_t12.tar.gz", "fa75699e90414af021442c21a62c3abf"),
}

META_FILE = "meta.bin"


[docs]class ImageNet(ImageFolder): """`ImageNet <http://image-net.org/>`_ 2012 Classification Dataset. .. note:: Before using this class, it is required to download ImageNet 2012 dataset from `here <https://image-net.org/challenges/LSVRC/2012/2012-downloads.php>`_ and place the files ``ILSVRC2012_devkit_t12.tar.gz`` and ``ILSVRC2012_img_train.tar`` or ``ILSVRC2012_img_val.tar`` based on ``split`` in the root directory. Args: root (string): Root directory of the ImageNet Dataset. split (string, optional): The dataset split, supports ``train``, or ``val``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. Attributes: classes (list): List of the class name tuples. class_to_idx (dict): Dict with items (class_name, class_index). wnids (list): List of the WordNet IDs. wnid_to_idx (dict): Dict with items (wordnet_id, class_index). imgs (list): List of (image path, class_index) tuples targets (list): The class_index value for each image in the dataset """ def __init__(self, root: str, split: str = "train", **kwargs: Any) -> None: root = self.root = os.path.expanduser(root) self.split = verify_str_arg(split, "split", ("train", "val")) self.parse_archives() wnid_to_classes = load_meta_file(self.root)[0] super().__init__(self.split_folder, **kwargs) self.root = root self.wnids = self.classes self.wnid_to_idx = self.class_to_idx self.classes = [wnid_to_classes[wnid] for wnid in self.wnids] self.class_to_idx = {cls: idx for idx, clss in enumerate(self.classes) for cls in clss} def parse_archives(self) -> None: if not check_integrity(os.path.join(self.root, META_FILE)): parse_devkit_archive(self.root) if not os.path.isdir(self.split_folder): if self.split == "train": parse_train_archive(self.root) elif self.split == "val": parse_val_archive(self.root) @property def split_folder(self) -> str: return os.path.join(self.root, self.split) def extra_repr(self) -> str: return "Split: {split}".format(**self.__dict__)
def load_meta_file(root: str, file: Optional[str] = None) -> Tuple[Dict[str, str], List[str]]: if file is None: file = META_FILE file = os.path.join(root, file) if check_integrity(file): return torch.load(file) else: msg = ( "The meta file {} is not present in the root directory or is corrupted. " "This file is automatically created by the ImageNet dataset." ) raise RuntimeError(msg.format(file, root)) def _verify_archive(root: str, file: str, md5: str) -> None: if not check_integrity(os.path.join(root, file), md5): msg = ( "The archive {} is not present in the root directory or is corrupted. " "You need to download it externally and place it in {}." ) raise RuntimeError(msg.format(file, root)) def parse_devkit_archive(root: str, file: Optional[str] = None) -> None: """Parse the devkit archive of the ImageNet2012 classification dataset and save the meta information in a binary file. Args: root (str): Root directory containing the devkit archive file (str, optional): Name of devkit archive. Defaults to 'ILSVRC2012_devkit_t12.tar.gz' """ import scipy.io as sio def parse_meta_mat(devkit_root: str) -> Tuple[Dict[int, str], Dict[str, Tuple[str, ...]]]: metafile = os.path.join(devkit_root, "data", "meta.mat") meta = sio.loadmat(metafile, squeeze_me=True)["synsets"] nums_children = list(zip(*meta))[4] meta = [meta[idx] for idx, num_children in enumerate(nums_children) if num_children == 0] idcs, wnids, classes = list(zip(*meta))[:3] classes = [tuple(clss.split(", ")) for clss in classes] idx_to_wnid = {idx: wnid for idx, wnid in zip(idcs, wnids)} wnid_to_classes = {wnid: clss for wnid, clss in zip(wnids, classes)} return idx_to_wnid, wnid_to_classes def parse_val_groundtruth_txt(devkit_root: str) -> List[int]: file = os.path.join(devkit_root, "data", "ILSVRC2012_validation_ground_truth.txt") with open(file) as txtfh: val_idcs = txtfh.readlines() return [int(val_idx) for val_idx in val_idcs] @contextmanager def get_tmp_dir() -> Iterator[str]: tmp_dir = tempfile.mkdtemp() try: yield tmp_dir finally: shutil.rmtree(tmp_dir) archive_meta = ARCHIVE_META["devkit"] if file is None: file = archive_meta[0] md5 = archive_meta[1] _verify_archive(root, file, md5) with get_tmp_dir() as tmp_dir: extract_archive(os.path.join(root, file), tmp_dir) devkit_root = os.path.join(tmp_dir, "ILSVRC2012_devkit_t12") idx_to_wnid, wnid_to_classes = parse_meta_mat(devkit_root) val_idcs = parse_val_groundtruth_txt(devkit_root) val_wnids = [idx_to_wnid[idx] for idx in val_idcs] torch.save((wnid_to_classes, val_wnids), os.path.join(root, META_FILE)) def parse_train_archive(root: str, file: Optional[str] = None, folder: str = "train") -> None: """Parse the train images archive of the ImageNet2012 classification dataset and prepare it for usage with the ImageNet dataset. Args: root (str): Root directory containing the train images archive file (str, optional): Name of train images archive. Defaults to 'ILSVRC2012_img_train.tar' folder (str, optional): Optional name for train images folder. Defaults to 'train' """ archive_meta = ARCHIVE_META["train"] if file is None: file = archive_meta[0] md5 = archive_meta[1] _verify_archive(root, file, md5) train_root = os.path.join(root, folder) extract_archive(os.path.join(root, file), train_root) archives = [os.path.join(train_root, archive) for archive in os.listdir(train_root)] for archive in archives: extract_archive(archive, os.path.splitext(archive)[0], remove_finished=True) def parse_val_archive( root: str, file: Optional[str] = None, wnids: Optional[List[str]] = None, folder: str = "val" ) -> None: """Parse the validation images archive of the ImageNet2012 classification dataset and prepare it for usage with the ImageNet dataset. Args: root (str): Root directory containing the validation images archive file (str, optional): Name of validation images archive. Defaults to 'ILSVRC2012_img_val.tar' wnids (list, optional): List of WordNet IDs of the validation images. If None is given, the IDs are loaded from the meta file in the root directory folder (str, optional): Optional name for validation images folder. Defaults to 'val' """ archive_meta = ARCHIVE_META["val"] if file is None: file = archive_meta[0] md5 = archive_meta[1] if wnids is None: wnids = load_meta_file(root)[1] _verify_archive(root, file, md5) val_root = os.path.join(root, folder) extract_archive(os.path.join(root, file), val_root) images = sorted(os.path.join(val_root, image) for image in os.listdir(val_root)) for wnid in set(wnids): os.mkdir(os.path.join(val_root, wnid)) for wnid, img_file in zip(wnids, images): shutil.move(img_file, os.path.join(val_root, wnid, os.path.basename(img_file)))

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources