Shortcuts

Source code for torchvision.datasets._stereo_matching

import functools
import json
import os
import random
import shutil
from abc import ABC, abstractmethod
from glob import glob
from pathlib import Path
from typing import Callable, cast, List, Optional, Tuple, Union

import numpy as np
from PIL import Image

from .utils import _read_pfm, download_and_extract_archive, verify_str_arg
from .vision import VisionDataset

T1 = Tuple[Image.Image, Image.Image, Optional[np.ndarray], np.ndarray]
T2 = Tuple[Image.Image, Image.Image, Optional[np.ndarray]]

__all__ = ()

_read_pfm_file = functools.partial(_read_pfm, slice_channels=1)


class StereoMatchingDataset(ABC, VisionDataset):
    """Base interface for Stereo matching datasets"""

    _has_built_in_disparity_mask = False

    def __init__(self, root: str, transforms: Optional[Callable] = None) -> None:
        """
        Args:
            root(str): Root directory of the dataset.
            transforms(callable, optional): A function/transform that takes in Tuples of
                (images, disparities, valid_masks) and returns a transformed version of each of them.
                images is a Tuple of (``PIL.Image``, ``PIL.Image``)
                disparities is a Tuple of (``np.ndarray``, ``np.ndarray``) with shape (1, H, W)
                valid_masks is a Tuple of (``np.ndarray``, ``np.ndarray``) with shape (H, W)
                In some cases, when a dataset does not provide disparities, the ``disparities`` and
                ``valid_masks`` can be Tuples containing None values.
                For training splits generally the datasets provide a minimal guarantee of
                images: (``PIL.Image``, ``PIL.Image``)
                disparities: (``np.ndarray``, ``None``) with shape (1, H, W)
                Optionally, based on the dataset, it can return a ``mask`` as well:
                valid_masks: (``np.ndarray | None``, ``None``) with shape (H, W)
                For some test splits, the datasets provides outputs that look like:
                imgaes: (``PIL.Image``, ``PIL.Image``)
                disparities: (``None``, ``None``)
                Optionally, based on the dataset, it can return a ``mask`` as well:
                valid_masks: (``None``, ``None``)
        """
        super().__init__(root=root)
        self.transforms = transforms

        self._images = []  # type: ignore
        self._disparities = []  # type: ignore

    def _read_img(self, file_path: Union[str, Path]) -> Image.Image:
        img = Image.open(file_path)
        if img.mode != "RGB":
            img = img.convert("RGB")
        return img

    def _scan_pairs(
        self,
        paths_left_pattern: str,
        paths_right_pattern: Optional[str] = None,
    ) -> List[Tuple[str, Optional[str]]]:

        left_paths = list(sorted(glob(paths_left_pattern)))

        right_paths: List[Union[None, str]]
        if paths_right_pattern:
            right_paths = list(sorted(glob(paths_right_pattern)))
        else:
            right_paths = list(None for _ in left_paths)

        if not left_paths:
            raise FileNotFoundError(f"Could not find any files matching the patterns: {paths_left_pattern}")

        if not right_paths:
            raise FileNotFoundError(f"Could not find any files matching the patterns: {paths_right_pattern}")

        if len(left_paths) != len(right_paths):
            raise ValueError(
                f"Found {len(left_paths)} left files but {len(right_paths)} right files using:\n "
                f"left pattern: {paths_left_pattern}\n"
                f"right pattern: {paths_right_pattern}\n"
            )

        paths = list((left, right) for left, right in zip(left_paths, right_paths))
        return paths

    @abstractmethod
    def _read_disparity(self, file_path: str) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
        # function that returns a disparity map and an occlusion map
        pass

    def __getitem__(self, index: int) -> Union[T1, T2]:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3 or 4-tuple with ``(img_left, img_right, disparity, Optional[valid_mask])`` where ``valid_mask``
                can be a numpy boolean mask of shape (H, W) if the dataset provides a file
                indicating which disparity pixels are valid. The disparity is a numpy array of
                shape (1, H, W) and the images are PIL images. ``disparity`` is None for
                datasets on which for ``split="test"`` the authors did not provide annotations.
        """
        img_left = self._read_img(self._images[index][0])
        img_right = self._read_img(self._images[index][1])

        dsp_map_left, valid_mask_left = self._read_disparity(self._disparities[index][0])
        dsp_map_right, valid_mask_right = self._read_disparity(self._disparities[index][1])

        imgs = (img_left, img_right)
        dsp_maps = (dsp_map_left, dsp_map_right)
        valid_masks = (valid_mask_left, valid_mask_right)

        if self.transforms is not None:
            (
                imgs,
                dsp_maps,
                valid_masks,
            ) = self.transforms(imgs, dsp_maps, valid_masks)

        if self._has_built_in_disparity_mask or valid_masks[0] is not None:
            return imgs[0], imgs[1], dsp_maps[0], cast(np.ndarray, valid_masks[0])
        else:
            return imgs[0], imgs[1], dsp_maps[0]

    def __len__(self) -> int:
        return len(self._images)


[docs]class CarlaStereo(StereoMatchingDataset): """ Carla simulator data linked in the `CREStereo github repo <https://github.com/megvii-research/CREStereo>`_. The dataset is expected to have the following structure: :: root carla-highres trainingF scene1 img0.png img1.png disp0GT.pfm disp1GT.pfm calib.txt scene2 img0.png img1.png disp0GT.pfm disp1GT.pfm calib.txt ... Args: root (string): Root directory where `carla-highres` is located. transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version. """ def __init__(self, root: str, transforms: Optional[Callable] = None) -> None: super().__init__(root, transforms) root = Path(root) / "carla-highres" left_image_pattern = str(root / "trainingF" / "*" / "im0.png") right_image_pattern = str(root / "trainingF" / "*" / "im1.png") imgs = self._scan_pairs(left_image_pattern, right_image_pattern) self._images = imgs left_disparity_pattern = str(root / "trainingF" / "*" / "disp0GT.pfm") right_disparity_pattern = str(root / "trainingF" / "*" / "disp1GT.pfm") disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern) self._disparities = disparities def _read_disparity(self, file_path: str) -> Tuple[np.ndarray, None]: disparity_map = _read_pfm_file(file_path) disparity_map = np.abs(disparity_map) # ensure that the disparity is positive valid_mask = None return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1: """Return example at given index. Args: index(int): The index of the example to retrieve Returns: tuple: A 3-tuple with ``(img_left, img_right, disparity)``. The disparity is a numpy array of shape (1, H, W) and the images are PIL images. If a ``valid_mask`` is generated within the ``transforms`` parameter, a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned. """ return cast(T1, super().__getitem__(index))
[docs]class Kitti2012Stereo(StereoMatchingDataset): """ KITTI dataset from the `2012 stereo evaluation benchmark <http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php>`_. Uses the RGB images for consistency with KITTI 2015. The dataset is expected to have the following structure: :: root Kitti2012 testing colored_0 1_10.png 2_10.png ... colored_1 1_10.png 2_10.png ... training colored_0 1_10.png 2_10.png ... colored_1 1_10.png 2_10.png ... disp_noc 1.png 2.png ... calib Args: root (string): Root directory where `Kitti2012` is located. split (string, optional): The dataset split of scenes, either "train" (default) or "test". transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version. """ _has_built_in_disparity_mask = True def __init__(self, root: str, split: str = "train", transforms: Optional[Callable] = None) -> None: super().__init__(root, transforms) verify_str_arg(split, "split", valid_values=("train", "test")) root = Path(root) / "Kitti2012" / (split + "ing") left_img_pattern = str(root / "colored_0" / "*_10.png") right_img_pattern = str(root / "colored_1" / "*_10.png") self._images = self._scan_pairs(left_img_pattern, right_img_pattern) if split == "train": disparity_pattern = str(root / "disp_noc" / "*.png") self._disparities = self._scan_pairs(disparity_pattern, None) else: self._disparities = list((None, None) for _ in self._images) def _read_disparity(self, file_path: str) -> Tuple[Optional[np.ndarray], None]: # test split has no disparity maps if file_path is None: return None, None disparity_map = np.asarray(Image.open(file_path)) / 256.0 # unsqueeze the disparity map into (C, H, W) format disparity_map = disparity_map[None, :, :] valid_mask = None return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1: """Return example at given index. Args: index(int): The index of the example to retrieve Returns: tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``. The disparity is a numpy array of shape (1, H, W) and the images are PIL images. ``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not generate a valid mask. Both ``disparity`` and ``valid_mask`` are ``None`` if the dataset split is test. """ return cast(T1, super().__getitem__(index))
[docs]class Kitti2015Stereo(StereoMatchingDataset): """ KITTI dataset from the `2015 stereo evaluation benchmark <http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php>`_. The dataset is expected to have the following structure: :: root Kitti2015 testing image_2 img1.png img2.png ... image_3 img1.png img2.png ... training image_2 img1.png img2.png ... image_3 img1.png img2.png ... disp_occ_0 img1.png img2.png ... disp_occ_1 img1.png img2.png ... calib Args: root (string): Root directory where `Kitti2015` is located. split (string, optional): The dataset split of scenes, either "train" (default) or "test". transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version. """ _has_built_in_disparity_mask = True def __init__(self, root: str, split: str = "train", transforms: Optional[Callable] = None) -> None: super().__init__(root, transforms) verify_str_arg(split, "split", valid_values=("train", "test")) root = Path(root) / "Kitti2015" / (split + "ing") left_img_pattern = str(root / "image_2" / "*.png") right_img_pattern = str(root / "image_3" / "*.png") self._images = self._scan_pairs(left_img_pattern, right_img_pattern) if split == "train": left_disparity_pattern = str(root / "disp_occ_0" / "*.png") right_disparity_pattern = str(root / "disp_occ_1" / "*.png") self._disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern) else: self._disparities = list((None, None) for _ in self._images) def _read_disparity(self, file_path: str) -> Tuple[Optional[np.ndarray], None]: # test split has no disparity maps if file_path is None: return None, None disparity_map = np.asarray(Image.open(file_path)) / 256.0 # unsqueeze the disparity map into (C, H, W) format disparity_map = disparity_map[None, :, :] valid_mask = None return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1: """Return example at given index. Args: index(int): The index of the example to retrieve Returns: tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``. The disparity is a numpy array of shape (1, H, W) and the images are PIL images. ``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not generate a valid mask. Both ``disparity`` and ``valid_mask`` are ``None`` if the dataset split is test. """ return cast(T1, super().__getitem__(index))
[docs]class Middlebury2014Stereo(StereoMatchingDataset): """Publicly available scenes from the Middlebury dataset `2014 version <https://vision.middlebury.edu/stereo/data/scenes2014/>`. The dataset mostly follows the original format, without containing the ambient subdirectories. : :: root Middlebury2014 train scene1-{perfect,imperfect} calib.txt im{0,1}.png im1E.png im1L.png disp{0,1}.pfm disp{0,1}-n.png disp{0,1}-sd.pfm disp{0,1}y.pfm scene2-{perfect,imperfect} calib.txt im{0,1}.png im1E.png im1L.png disp{0,1}.pfm disp{0,1}-n.png disp{0,1}-sd.pfm disp{0,1}y.pfm ... additional scene1-{perfect,imperfect} calib.txt im{0,1}.png im1E.png im1L.png disp{0,1}.pfm disp{0,1}-n.png disp{0,1}-sd.pfm disp{0,1}y.pfm ... test scene1 calib.txt im{0,1}.png scene2 calib.txt im{0,1}.png ... Args: root (string): Root directory of the Middleburry 2014 Dataset. split (string, optional): The dataset split of scenes, either "train" (default), "test", or "additional" use_ambient_views (boolean, optional): Whether to use different expose or lightning views when possible. The dataset samples with equal probability between ``[im1.png, im1E.png, im1L.png]``. calibration (string, optional): Whether or not to use the calibrated (default) or uncalibrated scenes. transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version. download (boolean, optional): Whether or not to download the dataset in the ``root`` directory. """ splits = { "train": [ "Adirondack", "Jadeplant", "Motorcycle", "Piano", "Pipes", "Playroom", "Playtable", "Recycle", "Shelves", "Vintage", ], "additional": [ "Backpack", "Bicycle1", "Cable", "Classroom1", "Couch", "Flowers", "Mask", "Shopvac", "Sticks", "Storage", "Sword1", "Sword2", "Umbrella", ], "test": [ "Plants", "Classroom2E", "Classroom2", "Australia", "DjembeL", "CrusadeP", "Crusade", "Hoops", "Bicycle2", "Staircase", "Newkuba", "AustraliaP", "Djembe", "Livingroom", "Computer", ], } _has_built_in_disparity_mask = True def __init__( self, root: str, split: str = "train", calibration: Optional[str] = "perfect", use_ambient_views: bool = False, transforms: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transforms) verify_str_arg(split, "split", valid_values=("train", "test", "additional")) self.split = split if calibration: verify_str_arg(calibration, "calibration", valid_values=("perfect", "imperfect", "both", None)) # type: ignore if split == "test": raise ValueError("Split 'test' has only no calibration settings, please set `calibration=None`.") else: if split != "test": raise ValueError( f"Split '{split}' has calibration settings, however None was provided as an argument." f"\nSetting calibration to 'perfect' for split '{split}'. Available calibration settings are: 'perfect', 'imperfect', 'both'.", ) if download: self._download_dataset(root) root = Path(root) / "Middlebury2014" if not os.path.exists(root / split): raise FileNotFoundError(f"The {split} directory was not found in the provided root directory") split_scenes = self.splits[split] # check that the provided root folder contains the scene splits if not any( # using startswith to account for perfect / imperfect calibrartion scene.startswith(s) for scene in os.listdir(root / split) for s in split_scenes ): raise FileNotFoundError(f"Provided root folder does not contain any scenes from the {split} split.") calibrartion_suffixes = { None: [""], "perfect": ["-perfect"], "imperfect": ["-imperfect"], "both": ["-perfect", "-imperfect"], }[calibration] for calibration_suffix in calibrartion_suffixes: scene_pattern = "*" + calibration_suffix left_img_pattern = str(root / split / scene_pattern / "im0.png") right_img_pattern = str(root / split / scene_pattern / "im1.png") self._images += self._scan_pairs(left_img_pattern, right_img_pattern) if split == "test": self._disparities = list((None, None) for _ in self._images) else: left_dispartity_pattern = str(root / split / scene_pattern / "disp0.pfm") right_dispartity_pattern = str(root / split / scene_pattern / "disp1.pfm") self._disparities += self._scan_pairs(left_dispartity_pattern, right_dispartity_pattern) self.use_ambient_views = use_ambient_views def _read_img(self, file_path: Union[str, Path]) -> Image.Image: """ Function that reads either the original right image or an augmented view when ``use_ambient_views`` is True. When ``use_ambient_views`` is True, the dataset will return at random one of ``[im1.png, im1E.png, im1L.png]`` as the right image. """ ambient_file_paths: List[Union[str, Path]] # make mypy happy if not isinstance(file_path, Path): file_path = Path(file_path) if file_path.name == "im1.png" and self.use_ambient_views: base_path = file_path.parent # initialize sampleable container ambient_file_paths = list(base_path / view_name for view_name in ["im1E.png", "im1L.png"]) # double check that we're not going to try to read from an invalid file path ambient_file_paths = list(filter(lambda p: os.path.exists(p), ambient_file_paths)) # keep the original image as an option as well for uniform sampling between base views ambient_file_paths.append(file_path) file_path = random.choice(ambient_file_paths) # type: ignore return super()._read_img(file_path) def _read_disparity(self, file_path: str) -> Union[Tuple[None, None], Tuple[np.ndarray, np.ndarray]]: # test split has not disparity maps if file_path is None: return None, None disparity_map = _read_pfm_file(file_path) disparity_map = np.abs(disparity_map) # ensure that the disparity is positive disparity_map[disparity_map == np.inf] = 0 # remove infinite disparities valid_mask = (disparity_map > 0).squeeze(0) # mask out invalid disparities return disparity_map, valid_mask def _download_dataset(self, root: str) -> None: base_url = "https://vision.middlebury.edu/stereo/data/scenes2014/zip" # train and additional splits have 2 different calibration settings root = Path(root) / "Middlebury2014" split_name = self.split if split_name != "test": for split_scene in self.splits[split_name]: split_root = root / split_name for calibration in ["perfect", "imperfect"]: scene_name = f"{split_scene}-{calibration}" scene_url = f"{base_url}/{scene_name}.zip" print(f"Downloading {scene_url}") # download the scene only if it doesn't exist if not (split_root / scene_name).exists(): download_and_extract_archive( url=scene_url, filename=f"{scene_name}.zip", download_root=str(split_root), remove_finished=True, ) else: os.makedirs(root / "test") if any(s not in os.listdir(root / "test") for s in self.splits["test"]): # test split is downloaded from a different location test_set_url = "https://vision.middlebury.edu/stereo/submit3/zip/MiddEval3-data-F.zip" # the unzip is going to produce a directory MiddEval3 with two subdirectories trainingF and testF # we want to move the contents from testF into the directory download_and_extract_archive(url=test_set_url, download_root=str(root), remove_finished=True) for scene_dir, scene_names, _ in os.walk(str(root / "MiddEval3/testF")): for scene in scene_names: scene_dst_dir = root / "test" scene_src_dir = Path(scene_dir) / scene os.makedirs(scene_dst_dir, exist_ok=True) shutil.move(str(scene_src_dir), str(scene_dst_dir)) # cleanup MiddEval3 directory shutil.rmtree(str(root / "MiddEval3"))
[docs] def __getitem__(self, index: int) -> T2: """Return example at given index. Args: index(int): The index of the example to retrieve Returns: tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``. The disparity is a numpy array of shape (1, H, W) and the images are PIL images. ``valid_mask`` is implicitly ``None`` for `split=test`. """ return cast(T2, super().__getitem__(index))
[docs]class CREStereo(StereoMatchingDataset): """Synthetic dataset used in training the `CREStereo <https://arxiv.org/pdf/2203.11483.pdf>`_ architecture. Dataset details on the official paper `repo <https://github.com/megvii-research/CREStereo>`_. The dataset is expected to have the following structure: :: root CREStereo tree img1_left.jpg img1_right.jpg img1_left.disp.jpg img1_right.disp.jpg img2_left.jpg img2_right.jpg img2_left.disp.jpg img2_right.disp.jpg ... shapenet img1_left.jpg img1_right.jpg img1_left.disp.jpg img1_right.disp.jpg ... reflective img1_left.jpg img1_right.jpg img1_left.disp.jpg img1_right.disp.jpg ... hole img1_left.jpg img1_right.jpg img1_left.disp.jpg img1_right.disp.jpg ... Args: root (str): Root directory of the dataset. transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version. """ _has_built_in_disparity_mask = True def __init__( self, root: str, transforms: Optional[Callable] = None, ) -> None: super().__init__(root, transforms) root = Path(root) / "CREStereo" dirs = ["shapenet", "reflective", "tree", "hole"] for s in dirs: left_image_pattern = str(root / s / "*_left.jpg") right_image_pattern = str(root / s / "*_right.jpg") imgs = self._scan_pairs(left_image_pattern, right_image_pattern) self._images += imgs left_disparity_pattern = str(root / s / "*_left.disp.png") right_disparity_pattern = str(root / s / "*_right.disp.png") disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern) self._disparities += disparities def _read_disparity(self, file_path: str) -> Tuple[np.ndarray, None]: disparity_map = np.asarray(Image.open(file_path), dtype=np.float32) # unsqueeze the disparity map into (C, H, W) format disparity_map = disparity_map[None, :, :] / 32.0 valid_mask = None return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1: """Return example at given index. Args: index(int): The index of the example to retrieve Returns: tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``. The disparity is a numpy array of shape (1, H, W) and the images are PIL images. ``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not generate a valid mask. """ return cast(T1, super().__getitem__(index))
[docs]class FallingThingsStereo(StereoMatchingDataset): """`FallingThings <https://research.nvidia.com/publication/2018-06_falling-things-synthetic-dataset-3d-object-detection-and-pose-estimation>`_ dataset. The dataset is expected to have the following structure: :: root FallingThings single dir1 scene1 _object_settings.json _camera_settings.json image1.left.depth.png image1.right.depth.png image1.left.jpg image1.right.jpg image2.left.depth.png image2.right.depth.png image2.left.jpg image2.right ... scene2 ... mixed scene1 _object_settings.json _camera_settings.json image1.left.depth.png image1.right.depth.png image1.left.jpg image1.right.jpg image2.left.depth.png image2.right.depth.png image2.left.jpg image2.right ... scene2 ... Args: root (string): Root directory where FallingThings is located. variant (string): Which variant to use. Either "single", "mixed", or "both". transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version. """ def __init__(self, root: str, variant: str = "single", transforms: Optional[Callable] = None) -> None: super().__init__(root, transforms) root = Path(root) / "FallingThings" verify_str_arg(variant, "variant", valid_values=("single", "mixed", "both")) variants = { "single": ["single"], "mixed": ["mixed"], "both": ["single", "mixed"], }[variant] split_prefix = { "single": Path("*") / "*", "mixed": Path("*"), } for s in variants: left_img_pattern = str(root / s / split_prefix[s] / "*.left.jpg") right_img_pattern = str(root / s / split_prefix[s] / "*.right.jpg") self._images += self._scan_pairs(left_img_pattern, right_img_pattern) left_disparity_pattern = str(root / s / split_prefix[s] / "*.left.depth.png") right_disparity_pattern = str(root / s / split_prefix[s] / "*.right.depth.png") self._disparities += self._scan_pairs(left_disparity_pattern, right_disparity_pattern) def _read_disparity(self, file_path: str) -> Tuple[np.ndarray, None]: # (H, W) image depth = np.asarray(Image.open(file_path)) # as per https://research.nvidia.com/sites/default/files/pubs/2018-06_Falling-Things/readme_0.txt # in order to extract disparity from depth maps camera_settings_path = Path(file_path).parent / "_camera_settings.json" with open(camera_settings_path, "r") as f: # inverse of depth-from-disparity equation: depth = (baseline * focal) / (disparity * pixel_constant) intrinsics = json.load(f) focal = intrinsics["camera_settings"][0]["intrinsic_settings"]["fx"] baseline, pixel_constant = 6, 100 # pixel constant is inverted disparity_map = (baseline * focal * pixel_constant) / depth.astype(np.float32) # unsqueeze disparity to (C, H, W) disparity_map = disparity_map[None, :, :] valid_mask = None return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1: """Return example at given index. Args: index(int): The index of the example to retrieve Returns: tuple: A 3-tuple with ``(img_left, img_right, disparity)``. The disparity is a numpy array of shape (1, H, W) and the images are PIL images. If a ``valid_mask`` is generated within the ``transforms`` parameter, a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned. """ return cast(T1, super().__getitem__(index))
[docs]class SceneFlowStereo(StereoMatchingDataset): """Dataset interface for `Scene Flow <https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html>`_ datasets. This interface provides access to the `FlyingThings3D, `Monkaa` and `Driving` datasets. The dataset is expected to have the following structure: :: root SceneFlow Monkaa frames_cleanpass scene1 left img1.png img2.png right img1.png img2.png scene2 left img1.png img2.png right img1.png img2.png frames_finalpass scene1 left img1.png img2.png right img1.png img2.png ... ... disparity scene1 left img1.pfm img2.pfm right img1.pfm img2.pfm FlyingThings3D ... ... Args: root (string): Root directory where SceneFlow is located. variant (string): Which dataset variant to user, "FlyingThings3D" (default), "Monkaa" or "Driving". pass_name (string): Which pass to use, "clean" (default), "final" or "both". transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version. """ def __init__( self, root: str, variant: str = "FlyingThings3D", pass_name: str = "clean", transforms: Optional[Callable] = None, ) -> None: super().__init__(root, transforms) root = Path(root) / "SceneFlow" verify_str_arg(variant, "variant", valid_values=("FlyingThings3D", "Driving", "Monkaa")) verify_str_arg(pass_name, "pass_name", valid_values=("clean", "final", "both")) passes = { "clean": ["frames_cleanpass"], "final": ["frames_finalpass"], "both": ["frames_cleanpass", "frames_finalpass"], }[pass_name] root = root / variant prefix_directories = { "Monkaa": Path("*"), "FlyingThings3D": Path("*") / "*" / "*", "Driving": Path("*") / "*" / "*", } for p in passes: left_image_pattern = str(root / p / prefix_directories[variant] / "left" / "*.png") right_image_pattern = str(root / p / prefix_directories[variant] / "right" / "*.png") self._images += self._scan_pairs(left_image_pattern, right_image_pattern) left_disparity_pattern = str(root / "disparity" / prefix_directories[variant] / "left" / "*.pfm") right_disparity_pattern = str(root / "disparity" / prefix_directories[variant] / "right" / "*.pfm") self._disparities += self._scan_pairs(left_disparity_pattern, right_disparity_pattern) def _read_disparity(self, file_path: str) -> Tuple[np.ndarray, None]: disparity_map = _read_pfm_file(file_path) disparity_map = np.abs(disparity_map) # ensure that the disparity is positive valid_mask = None return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1: """Return example at given index. Args: index(int): The index of the example to retrieve Returns: tuple: A 3-tuple with ``(img_left, img_right, disparity)``. The disparity is a numpy array of shape (1, H, W) and the images are PIL images. If a ``valid_mask`` is generated within the ``transforms`` parameter, a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned. """ return cast(T1, super().__getitem__(index))
[docs]class SintelStereo(StereoMatchingDataset): """Sintel `Stereo Dataset <http://sintel.is.tue.mpg.de/stereo>`_. The dataset is expected to have the following structure: :: root Sintel training final_left scene1 img1.png img2.png ... ... final_right scene2 img1.png img2.png ... ... disparities scene1 img1.png img2.png ... ... occlusions scene1 img1.png img2.png ... ... outofframe scene1 img1.png img2.png ... ... Args: root (string): Root directory where Sintel Stereo is located. pass_name (string): The name of the pass to use, either "final", "clean" or "both". transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version. """ _has_built_in_disparity_mask = True def __init__(self, root: str, pass_name: str = "final", transforms: Optional[Callable] = None) -> None: super().__init__(root, transforms) verify_str_arg(pass_name, "pass_name", valid_values=("final", "clean", "both")) root = Path(root) / "Sintel" pass_names = { "final": ["final"], "clean": ["clean"], "both": ["final", "clean"], }[pass_name] for p in pass_names: left_img_pattern = str(root / "training" / f"{p}_left" / "*" / "*.png") right_img_pattern = str(root / "training" / f"{p}_right" / "*" / "*.png") self._images += self._scan_pairs(left_img_pattern, right_img_pattern) disparity_pattern = str(root / "training" / "disparities" / "*" / "*.png") self._disparities += self._scan_pairs(disparity_pattern, None) def _get_occlussion_mask_paths(self, file_path: str) -> Tuple[str, str]: # helper function to get the occlusion mask paths # a path will look like .../.../.../training/disparities/scene1/img1.png # we want to get something like .../.../.../training/occlusions/scene1/img1.png fpath = Path(file_path) basename = fpath.name scenedir = fpath.parent # the parent of the scenedir is actually the disparity dir sampledir = scenedir.parent.parent occlusion_path = str(sampledir / "occlusions" / scenedir.name / basename) outofframe_path = str(sampledir / "outofframe" / scenedir.name / basename) if not os.path.exists(occlusion_path): raise FileNotFoundError(f"Occlusion mask {occlusion_path} does not exist") if not os.path.exists(outofframe_path): raise FileNotFoundError(f"Out of frame mask {outofframe_path} does not exist") return occlusion_path, outofframe_path def _read_disparity(self, file_path: str) -> Union[Tuple[None, None], Tuple[np.ndarray, np.ndarray]]: if file_path is None: return None, None # disparity decoding as per Sintel instructions in the README provided with the dataset disparity_map = np.asarray(Image.open(file_path), dtype=np.float32) r, g, b = np.split(disparity_map, 3, axis=-1) disparity_map = r * 4 + g / (2**6) + b / (2**14) # reshape into (C, H, W) format disparity_map = np.transpose(disparity_map, (2, 0, 1)) # find the appropriate file paths occlued_mask_path, out_of_frame_mask_path = self._get_occlussion_mask_paths(file_path) # occlusion masks valid_mask = np.asarray(Image.open(occlued_mask_path)) == 0 # out of frame masks off_mask = np.asarray(Image.open(out_of_frame_mask_path)) == 0 # combine the masks together valid_mask = np.logical_and(off_mask, valid_mask) return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T2: """Return example at given index. Args: index(int): The index of the example to retrieve Returns: tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned. The disparity is a numpy array of shape (1, H, W) and the images are PIL images whilst the valid_mask is a numpy array of shape (H, W). """ return cast(T2, super().__getitem__(index))
[docs]class InStereo2k(StereoMatchingDataset): """`InStereo2k <https://github.com/YuhuaXu/StereoDataset>`_ dataset. The dataset is expected to have the following structure: :: root InStereo2k train scene1 left.png right.png left_disp.png right_disp.png ... scene2 ... test scene1 left.png right.png left_disp.png right_disp.png ... scene2 ... Args: root (string): Root directory where InStereo2k is located. split (string): Either "train" or "test". transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version. """ def __init__(self, root: str, split: str = "train", transforms: Optional[Callable] = None) -> None: super().__init__(root, transforms) root = Path(root) / "InStereo2k" / split verify_str_arg(split, "split", valid_values=("train", "test")) left_img_pattern = str(root / "*" / "left.png") right_img_pattern = str(root / "*" / "right.png") self._images = self._scan_pairs(left_img_pattern, right_img_pattern) left_disparity_pattern = str(root / "*" / "left_disp.png") right_disparity_pattern = str(root / "*" / "right_disp.png") self._disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern) def _read_disparity(self, file_path: str) -> Tuple[np.ndarray, None]: disparity_map = np.asarray(Image.open(file_path), dtype=np.float32) # unsqueeze disparity to (C, H, W) disparity_map = disparity_map[None, :, :] / 1024.0 valid_mask = None return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T1: """Return example at given index. Args: index(int): The index of the example to retrieve Returns: tuple: A 3-tuple with ``(img_left, img_right, disparity)``. The disparity is a numpy array of shape (1, H, W) and the images are PIL images. If a ``valid_mask`` is generated within the ``transforms`` parameter, a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned. """ return cast(T1, super().__getitem__(index))
[docs]class ETH3DStereo(StereoMatchingDataset): """ETH3D `Low-Res Two-View <https://www.eth3d.net/datasets>`_ dataset. The dataset is expected to have the following structure: :: root ETH3D two_view_training scene1 im1.png im0.png images.txt cameras.txt calib.txt scene2 im1.png im0.png images.txt cameras.txt calib.txt ... two_view_training_gt scene1 disp0GT.pfm mask0nocc.png scene2 disp0GT.pfm mask0nocc.png ... two_view_testing scene1 im1.png im0.png images.txt cameras.txt calib.txt scene2 im1.png im0.png images.txt cameras.txt calib.txt ... Args: root (string): Root directory of the ETH3D Dataset. split (string, optional): The dataset split of scenes, either "train" (default) or "test". transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version. """ _has_built_in_disparity_mask = True def __init__(self, root: str, split: str = "train", transforms: Optional[Callable] = None) -> None: super().__init__(root, transforms) verify_str_arg(split, "split", valid_values=("train", "test")) root = Path(root) / "ETH3D" img_dir = "two_view_training" if split == "train" else "two_view_test" anot_dir = "two_view_training_gt" left_img_pattern = str(root / img_dir / "*" / "im0.png") right_img_pattern = str(root / img_dir / "*" / "im1.png") self._images = self._scan_pairs(left_img_pattern, right_img_pattern) if split == "test": self._disparities = list((None, None) for _ in self._images) else: disparity_pattern = str(root / anot_dir / "*" / "disp0GT.pfm") self._disparities = self._scan_pairs(disparity_pattern, None) def _read_disparity(self, file_path: str) -> Union[Tuple[None, None], Tuple[np.ndarray, np.ndarray]]: # test split has no disparity maps if file_path is None: return None, None disparity_map = _read_pfm_file(file_path) disparity_map = np.abs(disparity_map) # ensure that the disparity is positive mask_path = Path(file_path).parent / "mask0nocc.png" valid_mask = Image.open(mask_path) valid_mask = np.asarray(valid_mask).astype(bool) return disparity_map, valid_mask
[docs] def __getitem__(self, index: int) -> T2: """Return example at given index. Args: index(int): The index of the example to retrieve Returns: tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``. The disparity is a numpy array of shape (1, H, W) and the images are PIL images. ``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not generate a valid mask. Both ``disparity`` and ``valid_mask`` are ``None`` if the dataset split is test. """ return cast(T2, super().__getitem__(index))

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources