Shortcuts

DeformConv2d

class torchvision.ops.DeformConv2d(in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, padding: int = 0, dilation: int = 1, groups: int = 1, bias: bool = True)[source]

See deform_conv2d().

forward(input: Tensor, offset: Tensor, mask: Optional[Tensor] = None) Tensor[source]
Parameters:
  • input (Tensor[batch_size, in_channels, in_height, in_width]) – input tensor

  • offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width, out_height, out_width]) – offsets to be applied for each position in the convolution kernel.

  • mask (Tensor[batch_size, offset_groups * kernel_height * kernel_width, out_height, out_width]) – masks to be applied for each position in the convolution kernel.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources