Source code for torchvision.models.video.mvit
import math
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple
import torch
import torch.fx
import torch.nn as nn
from ...ops import MLP, StochasticDepth
from ...transforms._presets import VideoClassification
from ...utils import _log_api_usage_once
from .._api import register_model, Weights, WeightsEnum
from .._meta import _KINETICS400_CATEGORIES
from .._utils import _ovewrite_named_param, handle_legacy_interface
__all__ = [
"MViT",
"MViT_V1_B_Weights",
"mvit_v1_b",
"MViT_V2_S_Weights",
"mvit_v2_s",
]
@dataclass
class MSBlockConfig:
num_heads: int
input_channels: int
output_channels: int
kernel_q: List[int]
kernel_kv: List[int]
stride_q: List[int]
stride_kv: List[int]
def _prod(s: Sequence[int]) -> int:
product = 1
for v in s:
product *= v
return product
def _unsqueeze(x: torch.Tensor, target_dim: int, expand_dim: int) -> Tuple[torch.Tensor, int]:
tensor_dim = x.dim()
if tensor_dim == target_dim - 1:
x = x.unsqueeze(expand_dim)
elif tensor_dim != target_dim:
raise ValueError(f"Unsupported input dimension {x.shape}")
return x, tensor_dim
def _squeeze(x: torch.Tensor, target_dim: int, expand_dim: int, tensor_dim: int) -> torch.Tensor:
if tensor_dim == target_dim - 1:
x = x.squeeze(expand_dim)
return x
torch.fx.wrap("_unsqueeze")
torch.fx.wrap("_squeeze")
class Pool(nn.Module):
def __init__(
self,
pool: nn.Module,
norm: Optional[nn.Module],
activation: Optional[nn.Module] = None,
norm_before_pool: bool = False,
) -> None:
super().__init__()
self.pool = pool
layers = []
if norm is not None:
layers.append(norm)
if activation is not None:
layers.append(activation)
self.norm_act = nn.Sequential(*layers) if layers else None
self.norm_before_pool = norm_before_pool
def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]:
x, tensor_dim = _unsqueeze(x, 4, 1)
# Separate the class token and reshape the input
class_token, x = torch.tensor_split(x, indices=(1,), dim=2)
x = x.transpose(2, 3)
B, N, C = x.shape[:3]
x = x.reshape((B * N, C) + thw).contiguous()
# normalizing prior pooling is useful when we use BN which can be absorbed to speed up inference
if self.norm_before_pool and self.norm_act is not None:
x = self.norm_act(x)
# apply the pool on the input and add back the token
x = self.pool(x)
T, H, W = x.shape[2:]
x = x.reshape(B, N, C, -1).transpose(2, 3)
x = torch.cat((class_token, x), dim=2)
if not self.norm_before_pool and self.norm_act is not None:
x = self.norm_act(x)
x = _squeeze(x, 4, 1, tensor_dim)
return x, (T, H, W)
def _interpolate(embedding: torch.Tensor, d: int) -> torch.Tensor:
if embedding.shape[0] == d:
return embedding
return (
nn.functional.interpolate(
embedding.permute(1, 0).unsqueeze(0),
size=d,
mode="linear",
)
.squeeze(0)
.permute(1, 0)
)
def _add_rel_pos(
attn: torch.Tensor,
q: torch.Tensor,
q_thw: Tuple[int, int, int],
k_thw: Tuple[int, int, int],
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
rel_pos_t: torch.Tensor,
) -> torch.Tensor:
# Modified code from: https://github.com/facebookresearch/SlowFast/commit/1aebd71a2efad823d52b827a3deaf15a56cf4932
q_t, q_h, q_w = q_thw
k_t, k_h, k_w = k_thw
dh = int(2 * max(q_h, k_h) - 1)
dw = int(2 * max(q_w, k_w) - 1)
dt = int(2 * max(q_t, k_t) - 1)
# Scale up rel pos if shapes for q and k are different.
q_h_ratio = max(k_h / q_h, 1.0)
k_h_ratio = max(q_h / k_h, 1.0)
dist_h = torch.arange(q_h)[:, None] * q_h_ratio - (torch.arange(k_h)[None, :] + (1.0 - k_h)) * k_h_ratio
q_w_ratio = max(k_w / q_w, 1.0)
k_w_ratio = max(q_w / k_w, 1.0)
dist_w = torch.arange(q_w)[:, None] * q_w_ratio - (torch.arange(k_w)[None, :] + (1.0 - k_w)) * k_w_ratio
q_t_ratio = max(k_t / q_t, 1.0)
k_t_ratio = max(q_t / k_t, 1.0)
dist_t = torch.arange(q_t)[:, None] * q_t_ratio - (torch.arange(k_t)[None, :] + (1.0 - k_t)) * k_t_ratio
# Interpolate rel pos if needed.
rel_pos_h = _interpolate(rel_pos_h, dh)
rel_pos_w = _interpolate(rel_pos_w, dw)
rel_pos_t = _interpolate(rel_pos_t, dt)
Rh = rel_pos_h[dist_h.long()]
Rw = rel_pos_w[dist_w.long()]
Rt = rel_pos_t[dist_t.long()]
B, n_head, _, dim = q.shape
r_q = q[:, :, 1:].reshape(B, n_head, q_t, q_h, q_w, dim)
rel_h_q = torch.einsum("bythwc,hkc->bythwk", r_q, Rh) # [B, H, q_t, qh, qw, k_h]
rel_w_q = torch.einsum("bythwc,wkc->bythwk", r_q, Rw) # [B, H, q_t, qh, qw, k_w]
# [B, H, q_t, q_h, q_w, dim] -> [q_t, B, H, q_h, q_w, dim] -> [q_t, B*H*q_h*q_w, dim]
r_q = r_q.permute(2, 0, 1, 3, 4, 5).reshape(q_t, B * n_head * q_h * q_w, dim)
# [q_t, B*H*q_h*q_w, dim] * [q_t, dim, k_t] = [q_t, B*H*q_h*q_w, k_t] -> [B*H*q_h*q_w, q_t, k_t]
rel_q_t = torch.matmul(r_q, Rt.transpose(1, 2)).transpose(0, 1)
# [B*H*q_h*q_w, q_t, k_t] -> [B, H, q_t, q_h, q_w, k_t]
rel_q_t = rel_q_t.view(B, n_head, q_h, q_w, q_t, k_t).permute(0, 1, 4, 2, 3, 5)
# Combine rel pos.
rel_pos = (
rel_h_q[:, :, :, :, :, None, :, None]
+ rel_w_q[:, :, :, :, :, None, None, :]
+ rel_q_t[:, :, :, :, :, :, None, None]
).reshape(B, n_head, q_t * q_h * q_w, k_t * k_h * k_w)
# Add it to attention
attn[:, :, 1:, 1:] += rel_pos
return attn
def _add_shortcut(x: torch.Tensor, shortcut: torch.Tensor, residual_with_cls_embed: bool):
if residual_with_cls_embed:
x.add_(shortcut)
else:
x[:, :, 1:, :] += shortcut[:, :, 1:, :]
return x
torch.fx.wrap("_add_rel_pos")
torch.fx.wrap("_add_shortcut")
class MultiscaleAttention(nn.Module):
def __init__(
self,
input_size: List[int],
embed_dim: int,
output_dim: int,
num_heads: int,
kernel_q: List[int],
kernel_kv: List[int],
stride_q: List[int],
stride_kv: List[int],
residual_pool: bool,
residual_with_cls_embed: bool,
rel_pos_embed: bool,
dropout: float = 0.0,
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
) -> None:
super().__init__()
self.embed_dim = embed_dim
self.output_dim = output_dim
self.num_heads = num_heads
self.head_dim = output_dim // num_heads
self.scaler = 1.0 / math.sqrt(self.head_dim)
self.residual_pool = residual_pool
self.residual_with_cls_embed = residual_with_cls_embed
self.qkv = nn.Linear(embed_dim, 3 * output_dim)
layers: List[nn.Module] = [nn.Linear(output_dim, output_dim)]
if dropout > 0.0:
layers.append(nn.Dropout(dropout, inplace=True))
self.project = nn.Sequential(*layers)
self.pool_q: Optional[nn.Module] = None
if _prod(kernel_q) > 1 or _prod(stride_q) > 1:
padding_q = [int(q // 2) for q in kernel_q]
self.pool_q = Pool(
nn.Conv3d(
self.head_dim,
self.head_dim,
kernel_q, # type: ignore[arg-type]
stride=stride_q, # type: ignore[arg-type]
padding=padding_q, # type: ignore[arg-type]
groups=self.head_dim,
bias=False,
),
norm_layer(self.head_dim),
)
self.pool_k: Optional[nn.Module] = None
self.pool_v: Optional[nn.Module] = None
if _prod(kernel_kv) > 1 or _prod(stride_kv) > 1:
padding_kv = [int(kv // 2) for kv in kernel_kv]
self.pool_k = Pool(
nn.Conv3d(
self.head_dim,
self.head_dim,
kernel_kv, # type: ignore[arg-type]
stride=stride_kv, # type: ignore[arg-type]
padding=padding_kv, # type: ignore[arg-type]
groups=self.head_dim,
bias=False,
),
norm_layer(self.head_dim),
)
self.pool_v = Pool(
nn.Conv3d(
self.head_dim,
self.head_dim,
kernel_kv, # type: ignore[arg-type]
stride=stride_kv, # type: ignore[arg-type]
padding=padding_kv, # type: ignore[arg-type]
groups=self.head_dim,
bias=False,
),
norm_layer(self.head_dim),
)
self.rel_pos_h: Optional[nn.Parameter] = None
self.rel_pos_w: Optional[nn.Parameter] = None
self.rel_pos_t: Optional[nn.Parameter] = None
if rel_pos_embed:
size = max(input_size[1:])
q_size = size // stride_q[1] if len(stride_q) > 0 else size
kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size
spatial_dim = 2 * max(q_size, kv_size) - 1
temporal_dim = 2 * input_size[0] - 1
self.rel_pos_h = nn.Parameter(torch.zeros(spatial_dim, self.head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(spatial_dim, self.head_dim))
self.rel_pos_t = nn.Parameter(torch.zeros(temporal_dim, self.head_dim))
nn.init.trunc_normal_(self.rel_pos_h, std=0.02)
nn.init.trunc_normal_(self.rel_pos_w, std=0.02)
nn.init.trunc_normal_(self.rel_pos_t, std=0.02)
def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]:
B, N, C = x.shape
q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(dim=2)
if self.pool_k is not None:
k, k_thw = self.pool_k(k, thw)
else:
k_thw = thw
if self.pool_v is not None:
v = self.pool_v(v, thw)[0]
if self.pool_q is not None:
q, thw = self.pool_q(q, thw)
attn = torch.matmul(self.scaler * q, k.transpose(2, 3))
if self.rel_pos_h is not None and self.rel_pos_w is not None and self.rel_pos_t is not None:
attn = _add_rel_pos(
attn,
q,
thw,
k_thw,
self.rel_pos_h,
self.rel_pos_w,
self.rel_pos_t,
)
attn = attn.softmax(dim=-1)
x = torch.matmul(attn, v)
if self.residual_pool:
_add_shortcut(x, q, self.residual_with_cls_embed)
x = x.transpose(1, 2).reshape(B, -1, self.output_dim)
x = self.project(x)
return x, thw
class MultiscaleBlock(nn.Module):
def __init__(
self,
input_size: List[int],
cnf: MSBlockConfig,
residual_pool: bool,
residual_with_cls_embed: bool,
rel_pos_embed: bool,
proj_after_attn: bool,
dropout: float = 0.0,
stochastic_depth_prob: float = 0.0,
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
) -> None:
super().__init__()
self.proj_after_attn = proj_after_attn
self.pool_skip: Optional[nn.Module] = None
if _prod(cnf.stride_q) > 1:
kernel_skip = [s + 1 if s > 1 else s for s in cnf.stride_q]
padding_skip = [int(k // 2) for k in kernel_skip]
self.pool_skip = Pool(
nn.MaxPool3d(kernel_skip, stride=cnf.stride_q, padding=padding_skip), None # type: ignore[arg-type]
)
attn_dim = cnf.output_channels if proj_after_attn else cnf.input_channels
self.norm1 = norm_layer(cnf.input_channels)
self.norm2 = norm_layer(attn_dim)
self.needs_transposal = isinstance(self.norm1, nn.BatchNorm1d)
self.attn = MultiscaleAttention(
input_size,
cnf.input_channels,
attn_dim,
cnf.num_heads,
kernel_q=cnf.kernel_q,
kernel_kv=cnf.kernel_kv,
stride_q=cnf.stride_q,
stride_kv=cnf.stride_kv,
rel_pos_embed=rel_pos_embed,
residual_pool=residual_pool,
residual_with_cls_embed=residual_with_cls_embed,
dropout=dropout,
norm_layer=norm_layer,
)
self.mlp = MLP(
attn_dim,
[4 * attn_dim, cnf.output_channels],
activation_layer=nn.GELU,
dropout=dropout,
inplace=None,
)
self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
self.project: Optional[nn.Module] = None
if cnf.input_channels != cnf.output_channels:
self.project = nn.Linear(cnf.input_channels, cnf.output_channels)
def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]:
x_norm1 = self.norm1(x.transpose(1, 2)).transpose(1, 2) if self.needs_transposal else self.norm1(x)
x_attn, thw_new = self.attn(x_norm1, thw)
x = x if self.project is None or not self.proj_after_attn else self.project(x_norm1)
x_skip = x if self.pool_skip is None else self.pool_skip(x, thw)[0]
x = x_skip + self.stochastic_depth(x_attn)
x_norm2 = self.norm2(x.transpose(1, 2)).transpose(1, 2) if self.needs_transposal else self.norm2(x)
x_proj = x if self.project is None or self.proj_after_attn else self.project(x_norm2)
return x_proj + self.stochastic_depth(self.mlp(x_norm2)), thw_new
class PositionalEncoding(nn.Module):
def __init__(self, embed_size: int, spatial_size: Tuple[int, int], temporal_size: int, rel_pos_embed: bool) -> None:
super().__init__()
self.spatial_size = spatial_size
self.temporal_size = temporal_size
self.class_token = nn.Parameter(torch.zeros(embed_size))
self.spatial_pos: Optional[nn.Parameter] = None
self.temporal_pos: Optional[nn.Parameter] = None
self.class_pos: Optional[nn.Parameter] = None
if not rel_pos_embed:
self.spatial_pos = nn.Parameter(torch.zeros(self.spatial_size[0] * self.spatial_size[1], embed_size))
self.temporal_pos = nn.Parameter(torch.zeros(self.temporal_size, embed_size))
self.class_pos = nn.Parameter(torch.zeros(embed_size))
def forward(self, x: torch.Tensor) -> torch.Tensor:
class_token = self.class_token.expand(x.size(0), -1).unsqueeze(1)
x = torch.cat((class_token, x), dim=1)
if self.spatial_pos is not None and self.temporal_pos is not None and self.class_pos is not None:
hw_size, embed_size = self.spatial_pos.shape
pos_embedding = torch.repeat_interleave(self.temporal_pos, hw_size, dim=0)
pos_embedding.add_(self.spatial_pos.unsqueeze(0).expand(self.temporal_size, -1, -1).reshape(-1, embed_size))
pos_embedding = torch.cat((self.class_pos.unsqueeze(0), pos_embedding), dim=0).unsqueeze(0)
x.add_(pos_embedding)
return x
class MViT(nn.Module):
def __init__(
self,
spatial_size: Tuple[int, int],
temporal_size: int,
block_setting: Sequence[MSBlockConfig],
residual_pool: bool,
residual_with_cls_embed: bool,
rel_pos_embed: bool,
proj_after_attn: bool,
dropout: float = 0.5,
attention_dropout: float = 0.0,
stochastic_depth_prob: float = 0.0,
num_classes: int = 400,
block: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
patch_embed_kernel: Tuple[int, int, int] = (3, 7, 7),
patch_embed_stride: Tuple[int, int, int] = (2, 4, 4),
patch_embed_padding: Tuple[int, int, int] = (1, 3, 3),
) -> None:
"""
MViT main class.
Args:
spatial_size (tuple of ints): The spacial size of the input as ``(H, W)``.
temporal_size (int): The temporal size ``T`` of the input.
block_setting (sequence of MSBlockConfig): The Network structure.
residual_pool (bool): If True, use MViTv2 pooling residual connection.
residual_with_cls_embed (bool): If True, the addition on the residual connection will include
the class embedding.
rel_pos_embed (bool): If True, use MViTv2's relative positional embeddings.
proj_after_attn (bool): If True, apply the projection after the attention.
dropout (float): Dropout rate. Default: 0.0.
attention_dropout (float): Attention dropout rate. Default: 0.0.
stochastic_depth_prob: (float): Stochastic depth rate. Default: 0.0.
num_classes (int): The number of classes.
block (callable, optional): Module specifying the layer which consists of the attention and mlp.
norm_layer (callable, optional): Module specifying the normalization layer to use.
patch_embed_kernel (tuple of ints): The kernel of the convolution that patchifies the input.
patch_embed_stride (tuple of ints): The stride of the convolution that patchifies the input.
patch_embed_padding (tuple of ints): The padding of the convolution that patchifies the input.
"""
super().__init__()
# This implementation employs a different parameterization scheme than the one used at PyTorch Video:
# https://github.com/facebookresearch/pytorchvideo/blob/718d0a4/pytorchvideo/models/vision_transformers.py
# We remove any experimental configuration that didn't make it to the final variants of the models. To represent
# the configuration of the architecture we use the simplified form suggested at Table 1 of the paper.
_log_api_usage_once(self)
total_stage_blocks = len(block_setting)
if total_stage_blocks == 0:
raise ValueError("The configuration parameter can't be empty.")
if block is None:
block = MultiscaleBlock
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
# Patch Embedding module
self.conv_proj = nn.Conv3d(
in_channels=3,
out_channels=block_setting[0].input_channels,
kernel_size=patch_embed_kernel,
stride=patch_embed_stride,
padding=patch_embed_padding,
)
input_size = [size // stride for size, stride in zip((temporal_size,) + spatial_size, self.conv_proj.stride)]
# Spatio-Temporal Class Positional Encoding
self.pos_encoding = PositionalEncoding(
embed_size=block_setting[0].input_channels,
spatial_size=(input_size[1], input_size[2]),
temporal_size=input_size[0],
rel_pos_embed=rel_pos_embed,
)
# Encoder module
self.blocks = nn.ModuleList()
for stage_block_id, cnf in enumerate(block_setting):
# adjust stochastic depth probability based on the depth of the stage block
sd_prob = stochastic_depth_prob * stage_block_id / (total_stage_blocks - 1.0)
self.blocks.append(
block(
input_size=input_size,
cnf=cnf,
residual_pool=residual_pool,
residual_with_cls_embed=residual_with_cls_embed,
rel_pos_embed=rel_pos_embed,
proj_after_attn=proj_after_attn,
dropout=attention_dropout,
stochastic_depth_prob=sd_prob,
norm_layer=norm_layer,
)
)
if len(cnf.stride_q) > 0:
input_size = [size // stride for size, stride in zip(input_size, cnf.stride_q)]
self.norm = norm_layer(block_setting[-1].output_channels)
# Classifier module
self.head = nn.Sequential(
nn.Dropout(dropout, inplace=True),
nn.Linear(block_setting[-1].output_channels, num_classes),
)
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0.0)
elif isinstance(m, nn.LayerNorm):
if m.weight is not None:
nn.init.constant_(m.weight, 1.0)
if m.bias is not None:
nn.init.constant_(m.bias, 0.0)
elif isinstance(m, PositionalEncoding):
for weights in m.parameters():
nn.init.trunc_normal_(weights, std=0.02)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Convert if necessary (B, C, H, W) -> (B, C, 1, H, W)
x = _unsqueeze(x, 5, 2)[0]
# patchify and reshape: (B, C, T, H, W) -> (B, embed_channels[0], T', H', W') -> (B, THW', embed_channels[0])
x = self.conv_proj(x)
x = x.flatten(2).transpose(1, 2)
# add positional encoding
x = self.pos_encoding(x)
# pass patches through the encoder
thw = (self.pos_encoding.temporal_size,) + self.pos_encoding.spatial_size
for block in self.blocks:
x, thw = block(x, thw)
x = self.norm(x)
# classifier "token" as used by standard language architectures
x = x[:, 0]
x = self.head(x)
return x
def _mvit(
block_setting: List[MSBlockConfig],
stochastic_depth_prob: float,
weights: Optional[WeightsEnum],
progress: bool,
**kwargs: Any,
) -> MViT:
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
assert weights.meta["min_size"][0] == weights.meta["min_size"][1]
_ovewrite_named_param(kwargs, "spatial_size", weights.meta["min_size"])
_ovewrite_named_param(kwargs, "temporal_size", weights.meta["min_temporal_size"])
spatial_size = kwargs.pop("spatial_size", (224, 224))
temporal_size = kwargs.pop("temporal_size", 16)
model = MViT(
spatial_size=spatial_size,
temporal_size=temporal_size,
block_setting=block_setting,
residual_pool=kwargs.pop("residual_pool", False),
residual_with_cls_embed=kwargs.pop("residual_with_cls_embed", True),
rel_pos_embed=kwargs.pop("rel_pos_embed", False),
proj_after_attn=kwargs.pop("proj_after_attn", False),
stochastic_depth_prob=stochastic_depth_prob,
**kwargs,
)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress))
return model
[docs]class MViT_V1_B_Weights(WeightsEnum):
KINETICS400_V1 = Weights(
url="https://download.pytorch.org/models/mvit_v1_b-dbeb1030.pth",
transforms=partial(
VideoClassification,
crop_size=(224, 224),
resize_size=(256,),
mean=(0.45, 0.45, 0.45),
std=(0.225, 0.225, 0.225),
),
meta={
"min_size": (224, 224),
"min_temporal_size": 16,
"categories": _KINETICS400_CATEGORIES,
"recipe": "https://github.com/facebookresearch/pytorchvideo/blob/main/docs/source/model_zoo.md",
"_docs": (
"The weights were ported from the paper. The accuracies are estimated on video-level "
"with parameters `frame_rate=7.5`, `clips_per_video=5`, and `clip_len=16`"
),
"num_params": 36610672,
"_metrics": {
"Kinetics-400": {
"acc@1": 78.477,
"acc@5": 93.582,
}
},
},
)
DEFAULT = KINETICS400_V1
[docs]class MViT_V2_S_Weights(WeightsEnum):
KINETICS400_V1 = Weights(
url="https://download.pytorch.org/models/mvit_v2_s-ae3be167.pth",
transforms=partial(
VideoClassification,
crop_size=(224, 224),
resize_size=(256,),
mean=(0.45, 0.45, 0.45),
std=(0.225, 0.225, 0.225),
),
meta={
"min_size": (224, 224),
"min_temporal_size": 16,
"categories": _KINETICS400_CATEGORIES,
"recipe": "https://github.com/facebookresearch/SlowFast/blob/main/MODEL_ZOO.md",
"_docs": (
"The weights were ported from the paper. The accuracies are estimated on video-level "
"with parameters `frame_rate=7.5`, `clips_per_video=5`, and `clip_len=16`"
),
"num_params": 34537744,
"_metrics": {
"Kinetics-400": {
"acc@1": 80.757,
"acc@5": 94.665,
}
},
},
)
DEFAULT = KINETICS400_V1
[docs]@register_model()
@handle_legacy_interface(weights=("pretrained", MViT_V1_B_Weights.KINETICS400_V1))
def mvit_v1_b(*, weights: Optional[MViT_V1_B_Weights] = None, progress: bool = True, **kwargs: Any) -> MViT:
"""
Constructs a base MViTV1 architecture from
`Multiscale Vision Transformers <https://arxiv.org/abs/2104.11227>`__.
.. betastatus:: video module
Args:
weights (:class:`~torchvision.models.video.MViT_V1_B_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.video.MViT_V1_B_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.video.MViT``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/video/mvit.py>`_
for more details about this class.
.. autoclass:: torchvision.models.video.MViT_V1_B_Weights
:members:
"""
weights = MViT_V1_B_Weights.verify(weights)
config: Dict[str, List] = {
"num_heads": [1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8],
"input_channels": [96, 192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768, 768],
"output_channels": [192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768, 768, 768],
"kernel_q": [[], [3, 3, 3], [], [3, 3, 3], [], [], [], [], [], [], [], [], [], [], [3, 3, 3], []],
"kernel_kv": [
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
],
"stride_q": [[], [1, 2, 2], [], [1, 2, 2], [], [], [], [], [], [], [], [], [], [], [1, 2, 2], []],
"stride_kv": [
[1, 8, 8],
[1, 4, 4],
[1, 4, 4],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 1, 1],
[1, 1, 1],
],
}
block_setting = []
for i in range(len(config["num_heads"])):
block_setting.append(
MSBlockConfig(
num_heads=config["num_heads"][i],
input_channels=config["input_channels"][i],
output_channels=config["output_channels"][i],
kernel_q=config["kernel_q"][i],
kernel_kv=config["kernel_kv"][i],
stride_q=config["stride_q"][i],
stride_kv=config["stride_kv"][i],
)
)
return _mvit(
spatial_size=(224, 224),
temporal_size=16,
block_setting=block_setting,
residual_pool=False,
residual_with_cls_embed=False,
stochastic_depth_prob=kwargs.pop("stochastic_depth_prob", 0.2),
weights=weights,
progress=progress,
**kwargs,
)
[docs]@register_model()
@handle_legacy_interface(weights=("pretrained", MViT_V2_S_Weights.KINETICS400_V1))
def mvit_v2_s(*, weights: Optional[MViT_V2_S_Weights] = None, progress: bool = True, **kwargs: Any) -> MViT:
"""
Constructs a small MViTV2 architecture from
`Multiscale Vision Transformers <https://arxiv.org/abs/2104.11227>`__.
.. betastatus:: video module
Args:
weights (:class:`~torchvision.models.video.MViT_V2_S_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.video.MViT_V2_S_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.video.MViT``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/video/mvit.py>`_
for more details about this class.
.. autoclass:: torchvision.models.video.MViT_V2_S_Weights
:members:
"""
weights = MViT_V2_S_Weights.verify(weights)
config: Dict[str, List] = {
"num_heads": [1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8],
"input_channels": [96, 96, 192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768],
"output_channels": [96, 192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768, 768],
"kernel_q": [
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
],
"kernel_kv": [
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
],
"stride_q": [
[1, 1, 1],
[1, 2, 2],
[1, 1, 1],
[1, 2, 2],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 2, 2],
[1, 1, 1],
],
"stride_kv": [
[1, 8, 8],
[1, 4, 4],
[1, 4, 4],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 1, 1],
[1, 1, 1],
],
}
block_setting = []
for i in range(len(config["num_heads"])):
block_setting.append(
MSBlockConfig(
num_heads=config["num_heads"][i],
input_channels=config["input_channels"][i],
output_channels=config["output_channels"][i],
kernel_q=config["kernel_q"][i],
kernel_kv=config["kernel_kv"][i],
stride_q=config["stride_q"][i],
stride_kv=config["stride_kv"][i],
)
)
return _mvit(
spatial_size=(224, 224),
temporal_size=16,
block_setting=block_setting,
residual_pool=True,
residual_with_cls_embed=False,
rel_pos_embed=True,
proj_after_attn=True,
stochastic_depth_prob=kwargs.pop("stochastic_depth_prob", 0.2),
weights=weights,
progress=progress,
**kwargs,
)