Source code for torchvision.datasets.fer2013
import csv
import pathlib
from typing import Any, Callable, Optional, Tuple
import torch
from PIL import Image
from .utils import check_integrity, verify_str_arg
from .vision import VisionDataset
[docs]class FER2013(VisionDataset):
"""`FER2013
<https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge>`_ Dataset.
Args:
root (string): Root directory of dataset where directory
``root/fer2013`` exists.
split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``.
transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed
version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
"""
_RESOURCES = {
"train": ("train.csv", "3f0dfb3d3fd99c811a1299cb947e3131"),
"test": ("test.csv", "b02c2298636a634e8c2faabbf3ea9a23"),
}
def __init__(
self,
root: str,
split: str = "train",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
) -> None:
self._split = verify_str_arg(split, "split", self._RESOURCES.keys())
super().__init__(root, transform=transform, target_transform=target_transform)
base_folder = pathlib.Path(self.root) / "fer2013"
file_name, md5 = self._RESOURCES[self._split]
data_file = base_folder / file_name
if not check_integrity(str(data_file), md5=md5):
raise RuntimeError(
f"{file_name} not found in {base_folder} or corrupted. "
f"You can download it from "
f"https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge"
)
with open(data_file, "r", newline="") as file:
self._samples = [
(
torch.tensor([int(idx) for idx in row["pixels"].split()], dtype=torch.uint8).reshape(48, 48),
int(row["emotion"]) if "emotion" in row else None,
)
for row in csv.DictReader(file)
]
def __len__(self) -> int:
return len(self._samples)
[docs] def __getitem__(self, idx: int) -> Tuple[Any, Any]:
image_tensor, target = self._samples[idx]
image = Image.fromarray(image_tensor.numpy())
if self.transform is not None:
image = self.transform(image)
if self.target_transform is not None:
target = self.target_transform(target)
return image, target
def extra_repr(self) -> str:
return f"split={self._split}"