efficientnet_b5¶
-
torchvision.models.
efficientnet_b5
(*, weights: Optional[torchvision.models.efficientnet.EfficientNet_B5_Weights] = None, progress: bool = True, **kwargs: Any) → torchvision.models.efficientnet.EfficientNet[source]¶ EfficientNet B5 model architecture from the EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks paper.
- Parameters
weights (
EfficientNet_B5_Weights
, optional) – The pretrained weights to use. SeeEfficientNet_B5_Weights
below for more details, and possible values. By default, no pre-trained weights are used.progress (bool, optional) – If True, displays a progress bar of the download to stderr. Default is True.
**kwargs – parameters passed to the
torchvision.models.efficientnet.EfficientNet
base class. Please refer to the source code for more details about this class.
-
class
torchvision.models.
EfficientNet_B5_Weights
(value)[source]¶ The model builder above accepts the following values as the
weights
parameter.EfficientNet_B5_Weights.DEFAULT
is equivalent toEfficientNet_B5_Weights.IMAGENET1K_V1
. You can also use strings, e.g.weights='DEFAULT'
orweights='IMAGENET1K_V1'
.EfficientNet_B5_Weights.IMAGENET1K_V1:
These weights are ported from the original paper. Also available as
EfficientNet_B5_Weights.DEFAULT
.acc@1 (on ImageNet-1K)
83.444
acc@5 (on ImageNet-1K)
96.628
categories
tench, goldfish, great white shark, … (997 omitted)
min_size
height=1, width=1
recipe
num_params
30389784
The inference transforms are available at
EfficientNet_B5_Weights.IMAGENET1K_V1.transforms
and perform the following preprocessing operations: AcceptsPIL.Image
, batched(B, C, H, W)
and single(C, H, W)
imagetorch.Tensor
objects. The images are resized toresize_size=[456]
usinginterpolation=InterpolationMode.BICUBIC
, followed by a central crop ofcrop_size=[456]
. Finally the values are first rescaled to[0.0, 1.0]
and then normalized usingmean=[0.485, 0.456, 0.406]
andstd=[0.229, 0.224, 0.225]
.