perspective¶
-
torchvision.transforms.functional.
perspective
(img: torch.Tensor, startpoints: List[List[int]], endpoints: List[List[int]], interpolation: torchvision.transforms.functional.InterpolationMode = <InterpolationMode.BILINEAR: 'bilinear'>, fill: Optional[List[float]] = None) → torch.Tensor[source]¶ Perform perspective transform of the given image. If the image is torch Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions.
- Parameters
img (PIL Image or Tensor) – Image to be transformed.
startpoints (list of list of python:ints) – List containing four lists of two integers corresponding to four corners
[top-left, top-right, bottom-right, bottom-left]
of the original image.endpoints (list of list of python:ints) – List containing four lists of two integers corresponding to four corners
[top-left, top-right, bottom-right, bottom-left]
of the transformed image.interpolation (InterpolationMode) – Desired interpolation enum defined by
torchvision.transforms.InterpolationMode
. Default isInterpolationMode.BILINEAR
. If input is Tensor, onlyInterpolationMode.NEAREST
,InterpolationMode.BILINEAR
are supported. For backward compatibility integer values (e.g.PIL.Image[.Resampling].NEAREST
) are still accepted, but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.fill (sequence or number, optional) –
Pixel fill value for the area outside the transformed image. If given a number, the value is used for all bands respectively.
Note
In torchscript mode single int/float value is not supported, please use a sequence of length 1:
[value, ]
.
- Returns
transformed Image.
- Return type
PIL Image or Tensor
Examples using
perspective
:Illustration of transforms