Conv2dNormActivation¶
-
class
torchvision.ops.
Conv2dNormActivation
(in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, padding: Optional[int] = None, groups: int = 1, norm_layer: Optional[Callable[[...], torch.nn.modules.module.Module]] = <class 'torch.nn.modules.batchnorm.BatchNorm2d'>, activation_layer: Optional[Callable[[...], torch.nn.modules.module.Module]] = <class 'torch.nn.modules.activation.ReLU'>, dilation: int = 1, inplace: Optional[bool] = True, bias: Optional[bool] = None)[source]¶ Configurable block used for Convolution2d-Normalization-Activation blocks.
- Parameters
in_channels (int) – Number of channels in the input image
out_channels (int) – Number of channels produced by the Convolution-Normalization-Activation block
kernel_size – (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional) – Stride of the convolution. Default: 1
padding (int, tuple or str, optional) – Padding added to all four sides of the input. Default: None, in which case it will calculated as
padding = (kernel_size - 1) // 2 * dilation
groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[.., torch.nn.Module], optional) – Norm layer that will be stacked on top of the convolution layer. If
None
this layer wont be used. Default:torch.nn.BatchNorm2d
activation_layer (Callable[.., torch.nn.Module], optional) – Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If
None
this layer wont be used. Default:torch.nn.ReLU
dilation (int) – Spacing between kernel elements. Default: 1
inplace (bool) – Parameter for the activation layer, which can optionally do the operation in-place. Default
True
bias (bool, optional) – Whether to use bias in the convolution layer. By default, biases are included if
norm_layer is None
.