Source code for torchvision.models.segmentation.lraspp
from collections import OrderedDict
from functools import partial
from typing import Any, Dict, Optional
from torch import nn, Tensor
from torch.nn import functional as F
from ...transforms._presets import SemanticSegmentation
from ...utils import _log_api_usage_once
from .._api import WeightsEnum, Weights
from .._meta import _VOC_CATEGORIES
from .._utils import IntermediateLayerGetter, handle_legacy_interface, _ovewrite_value_param
from ..mobilenetv3 import MobileNetV3, MobileNet_V3_Large_Weights, mobilenet_v3_large
__all__ = ["LRASPP", "LRASPP_MobileNet_V3_Large_Weights", "lraspp_mobilenet_v3_large"]
class LRASPP(nn.Module):
"""
Implements a Lite R-ASPP Network for semantic segmentation from
`"Searching for MobileNetV3"
<https://arxiv.org/abs/1905.02244>`_.
Args:
backbone (nn.Module): the network used to compute the features for the model.
The backbone should return an OrderedDict[Tensor], with the key being
"high" for the high level feature map and "low" for the low level feature map.
low_channels (int): the number of channels of the low level features.
high_channels (int): the number of channels of the high level features.
num_classes (int, optional): number of output classes of the model (including the background).
inter_channels (int, optional): the number of channels for intermediate computations.
"""
def __init__(
self, backbone: nn.Module, low_channels: int, high_channels: int, num_classes: int, inter_channels: int = 128
) -> None:
super().__init__()
_log_api_usage_once(self)
self.backbone = backbone
self.classifier = LRASPPHead(low_channels, high_channels, num_classes, inter_channels)
def forward(self, input: Tensor) -> Dict[str, Tensor]:
features = self.backbone(input)
out = self.classifier(features)
out = F.interpolate(out, size=input.shape[-2:], mode="bilinear", align_corners=False)
result = OrderedDict()
result["out"] = out
return result
class LRASPPHead(nn.Module):
def __init__(self, low_channels: int, high_channels: int, num_classes: int, inter_channels: int) -> None:
super().__init__()
self.cbr = nn.Sequential(
nn.Conv2d(high_channels, inter_channels, 1, bias=False),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
)
self.scale = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(high_channels, inter_channels, 1, bias=False),
nn.Sigmoid(),
)
self.low_classifier = nn.Conv2d(low_channels, num_classes, 1)
self.high_classifier = nn.Conv2d(inter_channels, num_classes, 1)
def forward(self, input: Dict[str, Tensor]) -> Tensor:
low = input["low"]
high = input["high"]
x = self.cbr(high)
s = self.scale(high)
x = x * s
x = F.interpolate(x, size=low.shape[-2:], mode="bilinear", align_corners=False)
return self.low_classifier(low) + self.high_classifier(x)
def _lraspp_mobilenetv3(backbone: MobileNetV3, num_classes: int) -> LRASPP:
backbone = backbone.features
# Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
# The first and last blocks are always included because they are the C0 (conv1) and Cn.
stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
low_pos = stage_indices[-4] # use C2 here which has output_stride = 8
high_pos = stage_indices[-1] # use C5 which has output_stride = 16
low_channels = backbone[low_pos].out_channels
high_channels = backbone[high_pos].out_channels
backbone = IntermediateLayerGetter(backbone, return_layers={str(low_pos): "low", str(high_pos): "high"})
return LRASPP(backbone, low_channels, high_channels, num_classes)
[docs]class LRASPP_MobileNet_V3_Large_Weights(WeightsEnum):
COCO_WITH_VOC_LABELS_V1 = Weights(
url="https://download.pytorch.org/models/lraspp_mobilenet_v3_large-d234d4ea.pth",
transforms=partial(SemanticSegmentation, resize_size=520),
meta={
"num_params": 3221538,
"categories": _VOC_CATEGORIES,
"min_size": (1, 1),
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_large",
"_metrics": {
"COCO-val2017-VOC-labels": {
"miou": 57.9,
"pixel_acc": 91.2,
}
},
"_docs": """
These weights were trained on a subset of COCO, using only the 20 categories that are present in the
Pascal VOC dataset.
""",
},
)
DEFAULT = COCO_WITH_VOC_LABELS_V1
[docs]@handle_legacy_interface(
weights=("pretrained", LRASPP_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1),
weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
def lraspp_mobilenet_v3_large(
*,
weights: Optional[LRASPP_MobileNet_V3_Large_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
**kwargs: Any,
) -> LRASPP:
"""Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone from
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_ paper.
.. betastatus:: segmentation module
Args:
weights (:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
num_classes (int, optional): number of output classes of the model (including the background).
aux_loss (bool, optional): If True, it uses an auxiliary loss.
weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained
weights for the backbone.
**kwargs: parameters passed to the ``torchvision.models.segmentation.LRASPP``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/lraspp.py>`_
for more details about this class.
.. autoclass:: torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights
:members:
"""
if kwargs.pop("aux_loss", False):
raise NotImplementedError("This model does not use auxiliary loss")
weights = LRASPP_MobileNet_V3_Large_Weights.verify(weights)
weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)
if weights is not None:
weights_backbone = None
num_classes = _ovewrite_value_param(num_classes, len(weights.meta["categories"]))
elif num_classes is None:
num_classes = 21
backbone = mobilenet_v3_large(weights=weights_backbone, dilated=True)
model = _lraspp_mobilenetv3(backbone, num_classes)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress))
return model
# The dictionary below is internal implementation detail and will be removed in v0.15
from .._utils import _ModelURLs
model_urls = _ModelURLs(
{
"lraspp_mobilenet_v3_large_coco": LRASPP_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1.url,
}
)