Source code for torchvision.models.quantization.mobilenetv3
from functools import partial
from typing import Any, List, Optional, Union
import torch
from torch import nn, Tensor
from torch.ao.quantization import QuantStub, DeQuantStub
from ...ops.misc import Conv2dNormActivation, SqueezeExcitation
from ...transforms._presets import ImageClassification
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
from ..mobilenetv3 import (
InvertedResidual,
InvertedResidualConfig,
MobileNetV3,
_mobilenet_v3_conf,
MobileNet_V3_Large_Weights,
)
from .utils import _fuse_modules, _replace_relu
__all__ = [
"QuantizableMobileNetV3",
"MobileNet_V3_Large_QuantizedWeights",
"mobilenet_v3_large",
]
class QuantizableSqueezeExcitation(SqueezeExcitation):
_version = 2
def __init__(self, *args: Any, **kwargs: Any) -> None:
kwargs["scale_activation"] = nn.Hardsigmoid
super().__init__(*args, **kwargs)
self.skip_mul = nn.quantized.FloatFunctional()
def forward(self, input: Tensor) -> Tensor:
return self.skip_mul.mul(self._scale(input), input)
def fuse_model(self, is_qat: Optional[bool] = None) -> None:
_fuse_modules(self, ["fc1", "activation"], is_qat, inplace=True)
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
version = local_metadata.get("version", None)
if hasattr(self, "qconfig") and (version is None or version < 2):
default_state_dict = {
"scale_activation.activation_post_process.scale": torch.tensor([1.0]),
"scale_activation.activation_post_process.activation_post_process.scale": torch.tensor([1.0]),
"scale_activation.activation_post_process.zero_point": torch.tensor([0], dtype=torch.int32),
"scale_activation.activation_post_process.activation_post_process.zero_point": torch.tensor(
[0], dtype=torch.int32
),
"scale_activation.activation_post_process.fake_quant_enabled": torch.tensor([1]),
"scale_activation.activation_post_process.observer_enabled": torch.tensor([1]),
}
for k, v in default_state_dict.items():
full_key = prefix + k
if full_key not in state_dict:
state_dict[full_key] = v
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
)
class QuantizableInvertedResidual(InvertedResidual):
# TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(se_layer=QuantizableSqueezeExcitation, *args, **kwargs) # type: ignore[misc]
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x: Tensor) -> Tensor:
if self.use_res_connect:
return self.skip_add.add(x, self.block(x))
else:
return self.block(x)
class QuantizableMobileNetV3(MobileNetV3):
def __init__(self, *args: Any, **kwargs: Any) -> None:
"""
MobileNet V3 main class
Args:
Inherits args from floating point MobileNetV3
"""
super().__init__(*args, **kwargs)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x: Tensor) -> Tensor:
x = self.quant(x)
x = self._forward_impl(x)
x = self.dequant(x)
return x
def fuse_model(self, is_qat: Optional[bool] = None) -> None:
for m in self.modules():
if type(m) is Conv2dNormActivation:
modules_to_fuse = ["0", "1"]
if len(m) == 3 and type(m[2]) is nn.ReLU:
modules_to_fuse.append("2")
_fuse_modules(m, modules_to_fuse, is_qat, inplace=True)
elif type(m) is QuantizableSqueezeExcitation:
m.fuse_model(is_qat)
def _mobilenet_v3_model(
inverted_residual_setting: List[InvertedResidualConfig],
last_channel: int,
weights: Optional[WeightsEnum],
progress: bool,
quantize: bool,
**kwargs: Any,
) -> QuantizableMobileNetV3:
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
if "backend" in weights.meta:
_ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
backend = kwargs.pop("backend", "qnnpack")
model = QuantizableMobileNetV3(inverted_residual_setting, last_channel, block=QuantizableInvertedResidual, **kwargs)
_replace_relu(model)
if quantize:
# Instead of quantizing the model and then loading the quantized weights we take a different approach.
# We prepare the QAT model, load the QAT weights from training and then convert it.
# This is done to avoid extremely low accuracies observed on the specific model. This is rather a workaround
# for an unresolved bug on the eager quantization API detailed at: https://github.com/pytorch/vision/issues/5890
model.fuse_model(is_qat=True)
model.qconfig = torch.ao.quantization.get_default_qat_qconfig(backend)
torch.ao.quantization.prepare_qat(model, inplace=True)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress))
if quantize:
torch.ao.quantization.convert(model, inplace=True)
model.eval()
return model
[docs]class MobileNet_V3_Large_QuantizedWeights(WeightsEnum):
IMAGENET1K_QNNPACK_V1 = Weights(
url="https://download.pytorch.org/models/quantized/mobilenet_v3_large_qnnpack-5bcacf28.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
"num_params": 5483032,
"min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES,
"backend": "qnnpack",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv3",
"unquantized": MobileNet_V3_Large_Weights.IMAGENET1K_V1,
"_metrics": {
"ImageNet-1K": {
"acc@1": 73.004,
"acc@5": 90.858,
}
},
"_docs": """
These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized
weights listed below.
""",
},
)
DEFAULT = IMAGENET1K_QNNPACK_V1
[docs]@handle_legacy_interface(
weights=(
"pretrained",
lambda kwargs: MobileNet_V3_Large_QuantizedWeights.IMAGENET1K_QNNPACK_V1
if kwargs.get("quantize", False)
else MobileNet_V3_Large_Weights.IMAGENET1K_V1,
)
)
def mobilenet_v3_large(
*,
weights: Optional[Union[MobileNet_V3_Large_QuantizedWeights, MobileNet_V3_Large_Weights]] = None,
progress: bool = True,
quantize: bool = False,
**kwargs: Any,
) -> QuantizableMobileNetV3:
"""
MobileNetV3 (Large) model from
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_.
.. note::
Note that ``quantize = True`` returns a quantized model with 8 bit
weights. Quantized models only support inference and run on CPUs.
GPU inference is not yet supported.
Args:
weights (:class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
pretrained weights for the model. See
:class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool): If True, displays a progress bar of the
download to stderr. Default is True.
quantize (bool): If True, return a quantized version of the model. Default is False.
**kwargs: parameters passed to the ``torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv3.py>`_
for more details about this class.
.. autoclass:: torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights
:members:
.. autoclass:: torchvision.models.MobileNet_V3_Large_Weights
:members:
:noindex:
"""
weights = (MobileNet_V3_Large_QuantizedWeights if quantize else MobileNet_V3_Large_Weights).verify(weights)
inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_large", **kwargs)
return _mobilenet_v3_model(inverted_residual_setting, last_channel, weights, progress, quantize, **kwargs)
# The dictionary below is internal implementation detail and will be removed in v0.15
from .._utils import _ModelURLs
from ..mobilenetv3 import model_urls # noqa: F401
quant_model_urls = _ModelURLs(
{
"mobilenet_v3_large_qnnpack": MobileNet_V3_Large_QuantizedWeights.IMAGENET1K_QNNPACK_V1.url,
}
)