Source code for torchvision.models.mobilenetv3
import warnings
from functools import partial
from typing import Any, Callable, List, Optional, Sequence
import torch
from torch import nn, Tensor
from ..ops.misc import Conv2dNormActivation, SqueezeExcitation as SElayer
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param, _make_divisible
__all__ = [
"MobileNetV3",
"MobileNet_V3_Large_Weights",
"MobileNet_V3_Small_Weights",
"mobilenet_v3_large",
"mobilenet_v3_small",
]
class SqueezeExcitation(SElayer):
"""DEPRECATED"""
def __init__(self, input_channels: int, squeeze_factor: int = 4):
squeeze_channels = _make_divisible(input_channels // squeeze_factor, 8)
super().__init__(input_channels, squeeze_channels, scale_activation=nn.Hardsigmoid)
self.relu = self.activation
delattr(self, "activation")
warnings.warn(
"This SqueezeExcitation class is deprecated since 0.12 and will be removed in 0.14. "
"Use torchvision.ops.SqueezeExcitation instead.",
FutureWarning,
)
class InvertedResidualConfig:
# Stores information listed at Tables 1 and 2 of the MobileNetV3 paper
def __init__(
self,
input_channels: int,
kernel: int,
expanded_channels: int,
out_channels: int,
use_se: bool,
activation: str,
stride: int,
dilation: int,
width_mult: float,
):
self.input_channels = self.adjust_channels(input_channels, width_mult)
self.kernel = kernel
self.expanded_channels = self.adjust_channels(expanded_channels, width_mult)
self.out_channels = self.adjust_channels(out_channels, width_mult)
self.use_se = use_se
self.use_hs = activation == "HS"
self.stride = stride
self.dilation = dilation
@staticmethod
def adjust_channels(channels: int, width_mult: float):
return _make_divisible(channels * width_mult, 8)
class InvertedResidual(nn.Module):
# Implemented as described at section 5 of MobileNetV3 paper
def __init__(
self,
cnf: InvertedResidualConfig,
norm_layer: Callable[..., nn.Module],
se_layer: Callable[..., nn.Module] = partial(SElayer, scale_activation=nn.Hardsigmoid),
):
super().__init__()
if not (1 <= cnf.stride <= 2):
raise ValueError("illegal stride value")
self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels
layers: List[nn.Module] = []
activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU
# expand
if cnf.expanded_channels != cnf.input_channels:
layers.append(
Conv2dNormActivation(
cnf.input_channels,
cnf.expanded_channels,
kernel_size=1,
norm_layer=norm_layer,
activation_layer=activation_layer,
)
)
# depthwise
stride = 1 if cnf.dilation > 1 else cnf.stride
layers.append(
Conv2dNormActivation(
cnf.expanded_channels,
cnf.expanded_channels,
kernel_size=cnf.kernel,
stride=stride,
dilation=cnf.dilation,
groups=cnf.expanded_channels,
norm_layer=norm_layer,
activation_layer=activation_layer,
)
)
if cnf.use_se:
squeeze_channels = _make_divisible(cnf.expanded_channels // 4, 8)
layers.append(se_layer(cnf.expanded_channels, squeeze_channels))
# project
layers.append(
Conv2dNormActivation(
cnf.expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
)
)
self.block = nn.Sequential(*layers)
self.out_channels = cnf.out_channels
self._is_cn = cnf.stride > 1
def forward(self, input: Tensor) -> Tensor:
result = self.block(input)
if self.use_res_connect:
result += input
return result
class MobileNetV3(nn.Module):
def __init__(
self,
inverted_residual_setting: List[InvertedResidualConfig],
last_channel: int,
num_classes: int = 1000,
block: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
dropout: float = 0.2,
**kwargs: Any,
) -> None:
"""
MobileNet V3 main class
Args:
inverted_residual_setting (List[InvertedResidualConfig]): Network structure
last_channel (int): The number of channels on the penultimate layer
num_classes (int): Number of classes
block (Optional[Callable[..., nn.Module]]): Module specifying inverted residual building block for mobilenet
norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
dropout (float): The droupout probability
"""
super().__init__()
_log_api_usage_once(self)
if not inverted_residual_setting:
raise ValueError("The inverted_residual_setting should not be empty")
elif not (
isinstance(inverted_residual_setting, Sequence)
and all([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting])
):
raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]")
if block is None:
block = InvertedResidual
if norm_layer is None:
norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)
layers: List[nn.Module] = []
# building first layer
firstconv_output_channels = inverted_residual_setting[0].input_channels
layers.append(
Conv2dNormActivation(
3,
firstconv_output_channels,
kernel_size=3,
stride=2,
norm_layer=norm_layer,
activation_layer=nn.Hardswish,
)
)
# building inverted residual blocks
for cnf in inverted_residual_setting:
layers.append(block(cnf, norm_layer))
# building last several layers
lastconv_input_channels = inverted_residual_setting[-1].out_channels
lastconv_output_channels = 6 * lastconv_input_channels
layers.append(
Conv2dNormActivation(
lastconv_input_channels,
lastconv_output_channels,
kernel_size=1,
norm_layer=norm_layer,
activation_layer=nn.Hardswish,
)
)
self.features = nn.Sequential(*layers)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Sequential(
nn.Linear(lastconv_output_channels, last_channel),
nn.Hardswish(inplace=True),
nn.Dropout(p=dropout, inplace=True),
nn.Linear(last_channel, num_classes),
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x: Tensor) -> Tensor:
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
def _mobilenet_v3_conf(
arch: str, width_mult: float = 1.0, reduced_tail: bool = False, dilated: bool = False, **kwargs: Any
):
reduce_divider = 2 if reduced_tail else 1
dilation = 2 if dilated else 1
bneck_conf = partial(InvertedResidualConfig, width_mult=width_mult)
adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_mult=width_mult)
if arch == "mobilenet_v3_large":
inverted_residual_setting = [
bneck_conf(16, 3, 16, 16, False, "RE", 1, 1),
bneck_conf(16, 3, 64, 24, False, "RE", 2, 1), # C1
bneck_conf(24, 3, 72, 24, False, "RE", 1, 1),
bneck_conf(24, 5, 72, 40, True, "RE", 2, 1), # C2
bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
bneck_conf(40, 3, 240, 80, False, "HS", 2, 1), # C3
bneck_conf(80, 3, 200, 80, False, "HS", 1, 1),
bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
bneck_conf(80, 3, 480, 112, True, "HS", 1, 1),
bneck_conf(112, 3, 672, 112, True, "HS", 1, 1),
bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", 2, dilation), # C4
bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
]
last_channel = adjust_channels(1280 // reduce_divider) # C5
elif arch == "mobilenet_v3_small":
inverted_residual_setting = [
bneck_conf(16, 3, 16, 16, True, "RE", 2, 1), # C1
bneck_conf(16, 3, 72, 24, False, "RE", 2, 1), # C2
bneck_conf(24, 3, 88, 24, False, "RE", 1, 1),
bneck_conf(24, 5, 96, 40, True, "HS", 2, 1), # C3
bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
bneck_conf(40, 5, 120, 48, True, "HS", 1, 1),
bneck_conf(48, 5, 144, 48, True, "HS", 1, 1),
bneck_conf(48, 5, 288, 96 // reduce_divider, True, "HS", 2, dilation), # C4
bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
]
last_channel = adjust_channels(1024 // reduce_divider) # C5
else:
raise ValueError(f"Unsupported model type {arch}")
return inverted_residual_setting, last_channel
def _mobilenet_v3(
inverted_residual_setting: List[InvertedResidualConfig],
last_channel: int,
weights: Optional[WeightsEnum],
progress: bool,
**kwargs: Any,
) -> MobileNetV3:
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
model = MobileNetV3(inverted_residual_setting, last_channel, **kwargs)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress))
return model
_COMMON_META = {
"min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES,
}
[docs]class MobileNet_V3_Large_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 5483032,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small",
"_metrics": {
"ImageNet-1K": {
"acc@1": 74.042,
"acc@5": 91.340,
}
},
"_docs": """These weights were trained from scratch by using a simple training recipe.""",
},
)
IMAGENET1K_V2 = Weights(
url="https://download.pytorch.org/models/mobilenet_v3_large-5c1a4163.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"num_params": 5483032,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning",
"_metrics": {
"ImageNet-1K": {
"acc@1": 75.274,
"acc@5": 92.566,
}
},
"_docs": """
These weights improve marginally upon the results of the original paper by using a modified version of
TorchVision's `new training recipe
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
""",
},
)
DEFAULT = IMAGENET1K_V2
class MobileNet_V3_Small_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 2542856,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small",
"_metrics": {
"ImageNet-1K": {
"acc@1": 67.668,
"acc@5": 87.402,
}
},
"_docs": """
These weights improve upon the results of the original paper by using a simple training recipe.
""",
},
)
DEFAULT = IMAGENET1K_V1
@handle_legacy_interface(weights=("pretrained", MobileNet_V3_Large_Weights.IMAGENET1K_V1))
def mobilenet_v3_large(
*, weights: Optional[MobileNet_V3_Large_Weights] = None, progress: bool = True, **kwargs: Any
) -> MobileNetV3:
"""
Constructs a large MobileNetV3 architecture from
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__.
Args:
weights (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.MobileNet_V3_Large_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.resnet.MobileNetV3``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py>`_
for more details about this class.
.. autoclass:: torchvision.models.MobileNet_V3_Large_Weights
:members:
"""
weights = MobileNet_V3_Large_Weights.verify(weights)
inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_large", **kwargs)
return _mobilenet_v3(inverted_residual_setting, last_channel, weights, progress, **kwargs)
@handle_legacy_interface(weights=("pretrained", MobileNet_V3_Small_Weights.IMAGENET1K_V1))
def mobilenet_v3_small(
*, weights: Optional[MobileNet_V3_Small_Weights] = None, progress: bool = True, **kwargs: Any
) -> MobileNetV3:
"""
Constructs a small MobileNetV3 architecture from
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__.
Args:
weights (:class:`~torchvision.models.MobileNet_V3_Small_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.MobileNet_V3_Small_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.resnet.MobileNetV3``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py>`_
for more details about this class.
.. autoclass:: torchvision.models.MobileNet_V3_Small_Weights
:members:
"""
weights = MobileNet_V3_Small_Weights.verify(weights)
inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_small", **kwargs)
return _mobilenet_v3(inverted_residual_setting, last_channel, weights, progress, **kwargs)
# The dictionary below is internal implementation detail and will be removed in v0.15
from ._utils import _ModelURLs
model_urls = _ModelURLs(
{
"mobilenet_v3_large": MobileNet_V3_Large_Weights.IMAGENET1K_V1.url,
"mobilenet_v3_small": MobileNet_V3_Small_Weights.IMAGENET1K_V1.url,
}
)