Source code for torchvision.io.image
from enum import Enum
from warnings import warn
import torch
from ..extension import _load_library
from ..utils import _log_api_usage_once
try:
_load_library("image")
except (ImportError, OSError) as e:
warn(f"Failed to load image Python extension: {e}")
class ImageReadMode(Enum):
"""
Support for various modes while reading images.
Use ``ImageReadMode.UNCHANGED`` for loading the image as-is,
``ImageReadMode.GRAY`` for converting to grayscale,
``ImageReadMode.GRAY_ALPHA`` for grayscale with transparency,
``ImageReadMode.RGB`` for RGB and ``ImageReadMode.RGB_ALPHA`` for
RGB with transparency.
"""
UNCHANGED = 0
GRAY = 1
GRAY_ALPHA = 2
RGB = 3
RGB_ALPHA = 4
[docs]def read_file(path: str) -> torch.Tensor:
"""
Reads and outputs the bytes contents of a file as a uint8 Tensor
with one dimension.
Args:
path (str): the path to the file to be read
Returns:
data (Tensor)
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(read_file)
data = torch.ops.image.read_file(path)
return data
[docs]def write_file(filename: str, data: torch.Tensor) -> None:
"""
Writes the contents of a uint8 tensor with one dimension to a
file.
Args:
filename (str): the path to the file to be written
data (Tensor): the contents to be written to the output file
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(write_file)
torch.ops.image.write_file(filename, data)
def decode_png(input: torch.Tensor, mode: ImageReadMode = ImageReadMode.UNCHANGED) -> torch.Tensor:
"""
Decodes a PNG image into a 3 dimensional RGB or grayscale Tensor.
Optionally converts the image to the desired format.
The values of the output tensor are uint8 in [0, 255].
Args:
input (Tensor[1]): a one dimensional uint8 tensor containing
the raw bytes of the PNG image.
mode (ImageReadMode): the read mode used for optionally
converting the image. Default: ``ImageReadMode.UNCHANGED``.
See `ImageReadMode` class for more information on various
available modes.
Returns:
output (Tensor[image_channels, image_height, image_width])
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(decode_png)
output = torch.ops.image.decode_png(input, mode.value, False)
return output
[docs]def encode_png(input: torch.Tensor, compression_level: int = 6) -> torch.Tensor:
"""
Takes an input tensor in CHW layout and returns a buffer with the contents
of its corresponding PNG file.
Args:
input (Tensor[channels, image_height, image_width]): int8 image tensor of
``c`` channels, where ``c`` must 3 or 1.
compression_level (int): Compression factor for the resulting file, it must be a number
between 0 and 9. Default: 6
Returns:
Tensor[1]: A one dimensional int8 tensor that contains the raw bytes of the
PNG file.
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(encode_png)
output = torch.ops.image.encode_png(input, compression_level)
return output
[docs]def write_png(input: torch.Tensor, filename: str, compression_level: int = 6):
"""
Takes an input tensor in CHW layout (or HW in the case of grayscale images)
and saves it in a PNG file.
Args:
input (Tensor[channels, image_height, image_width]): int8 image tensor of
``c`` channels, where ``c`` must be 1 or 3.
filename (str): Path to save the image.
compression_level (int): Compression factor for the resulting file, it must be a number
between 0 and 9. Default: 6
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(write_png)
output = encode_png(input, compression_level)
write_file(filename, output)
def decode_jpeg(
input: torch.Tensor, mode: ImageReadMode = ImageReadMode.UNCHANGED, device: str = "cpu"
) -> torch.Tensor:
"""
Decodes a JPEG image into a 3 dimensional RGB or grayscale Tensor.
Optionally converts the image to the desired format.
The values of the output tensor are uint8 between 0 and 255.
Args:
input (Tensor[1]): a one dimensional uint8 tensor containing
the raw bytes of the JPEG image. This tensor must be on CPU,
regardless of the ``device`` parameter.
mode (ImageReadMode): the read mode used for optionally
converting the image. Default: ``ImageReadMode.UNCHANGED``.
See ``ImageReadMode`` class for more information on various
available modes.
device (str or torch.device): The device on which the decoded image will
be stored. If a cuda device is specified, the image will be decoded
with `nvjpeg <https://developer.nvidia.com/nvjpeg>`_. This is only
supported for CUDA version >= 10.1
.. betastatus:: device parameter
.. warning::
There is a memory leak in the nvjpeg library for CUDA versions < 11.6.
Make sure to rely on CUDA 11.6 or above before using ``device="cuda"``.
Returns:
output (Tensor[image_channels, image_height, image_width])
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(decode_jpeg)
device = torch.device(device)
if device.type == "cuda":
output = torch.ops.image.decode_jpeg_cuda(input, mode.value, device)
else:
output = torch.ops.image.decode_jpeg(input, mode.value)
return output
[docs]def encode_jpeg(input: torch.Tensor, quality: int = 75) -> torch.Tensor:
"""
Takes an input tensor in CHW layout and returns a buffer with the contents
of its corresponding JPEG file.
Args:
input (Tensor[channels, image_height, image_width])): int8 image tensor of
``c`` channels, where ``c`` must be 1 or 3.
quality (int): Quality of the resulting JPEG file, it must be a number between
1 and 100. Default: 75
Returns:
output (Tensor[1]): A one dimensional int8 tensor that contains the raw bytes of the
JPEG file.
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(encode_jpeg)
if quality < 1 or quality > 100:
raise ValueError("Image quality should be a positive number between 1 and 100")
output = torch.ops.image.encode_jpeg(input, quality)
return output
[docs]def write_jpeg(input: torch.Tensor, filename: str, quality: int = 75):
"""
Takes an input tensor in CHW layout and saves it in a JPEG file.
Args:
input (Tensor[channels, image_height, image_width]): int8 image tensor of ``c``
channels, where ``c`` must be 1 or 3.
filename (str): Path to save the image.
quality (int): Quality of the resulting JPEG file, it must be a number
between 1 and 100. Default: 75
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(write_jpeg)
output = encode_jpeg(input, quality)
write_file(filename, output)
def decode_image(input: torch.Tensor, mode: ImageReadMode = ImageReadMode.UNCHANGED) -> torch.Tensor:
"""
Detects whether an image is a JPEG or PNG and performs the appropriate
operation to decode the image into a 3 dimensional RGB or grayscale Tensor.
Optionally converts the image to the desired format.
The values of the output tensor are uint8 in [0, 255].
Args:
input (Tensor): a one dimensional uint8 tensor containing the raw bytes of the
PNG or JPEG image.
mode (ImageReadMode): the read mode used for optionally converting the image.
Default: ``ImageReadMode.UNCHANGED``.
See ``ImageReadMode`` class for more information on various
available modes.
Returns:
output (Tensor[image_channels, image_height, image_width])
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(decode_image)
output = torch.ops.image.decode_image(input, mode.value)
return output
[docs]def read_image(path: str, mode: ImageReadMode = ImageReadMode.UNCHANGED) -> torch.Tensor:
"""
Reads a JPEG or PNG image into a 3 dimensional RGB or grayscale Tensor.
Optionally converts the image to the desired format.
The values of the output tensor are uint8 in [0, 255].
Args:
path (str): path of the JPEG or PNG image.
mode (ImageReadMode): the read mode used for optionally converting the image.
Default: ``ImageReadMode.UNCHANGED``.
See ``ImageReadMode`` class for more information on various
available modes.
Returns:
output (Tensor[image_channels, image_height, image_width])
"""
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(read_image)
data = read_file(path)
return decode_image(data, mode)
def _read_png_16(path: str, mode: ImageReadMode = ImageReadMode.UNCHANGED) -> torch.Tensor:
data = read_file(path)
return torch.ops.image.decode_png(data, mode.value, True)