Shortcuts

Source code for torchvision.datasets.voc

import collections
import os
from xml.etree.ElementTree import Element as ET_Element

from .vision import VisionDataset

try:
    from defusedxml.ElementTree import parse as ET_parse
except ImportError:
    from xml.etree.ElementTree import parse as ET_parse
import warnings
from typing import Any, Callable, Dict, Optional, Tuple, List

from PIL import Image

from .utils import download_and_extract_archive, verify_str_arg

DATASET_YEAR_DICT = {
    "2012": {
        "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar",
        "filename": "VOCtrainval_11-May-2012.tar",
        "md5": "6cd6e144f989b92b3379bac3b3de84fd",
        "base_dir": os.path.join("VOCdevkit", "VOC2012"),
    },
    "2011": {
        "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar",
        "filename": "VOCtrainval_25-May-2011.tar",
        "md5": "6c3384ef61512963050cb5d687e5bf1e",
        "base_dir": os.path.join("TrainVal", "VOCdevkit", "VOC2011"),
    },
    "2010": {
        "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar",
        "filename": "VOCtrainval_03-May-2010.tar",
        "md5": "da459979d0c395079b5c75ee67908abb",
        "base_dir": os.path.join("VOCdevkit", "VOC2010"),
    },
    "2009": {
        "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar",
        "filename": "VOCtrainval_11-May-2009.tar",
        "md5": "a3e00b113cfcfebf17e343f59da3caa1",
        "base_dir": os.path.join("VOCdevkit", "VOC2009"),
    },
    "2008": {
        "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar",
        "filename": "VOCtrainval_11-May-2012.tar",
        "md5": "2629fa636546599198acfcfbfcf1904a",
        "base_dir": os.path.join("VOCdevkit", "VOC2008"),
    },
    "2007": {
        "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar",
        "filename": "VOCtrainval_06-Nov-2007.tar",
        "md5": "c52e279531787c972589f7e41ab4ae64",
        "base_dir": os.path.join("VOCdevkit", "VOC2007"),
    },
    "2007-test": {
        "url": "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar",
        "filename": "VOCtest_06-Nov-2007.tar",
        "md5": "b6e924de25625d8de591ea690078ad9f",
        "base_dir": os.path.join("VOCdevkit", "VOC2007"),
    },
}


class _VOCBase(VisionDataset):
    _SPLITS_DIR: str
    _TARGET_DIR: str
    _TARGET_FILE_EXT: str

    def __init__(
        self,
        root: str,
        year: str = "2012",
        image_set: str = "train",
        download: bool = False,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        transforms: Optional[Callable] = None,
    ):
        super().__init__(root, transforms, transform, target_transform)
        if year == "2007-test":
            if image_set == "test":
                warnings.warn(
                    "Accessing the test image set of the year 2007 with year='2007-test' is deprecated "
                    "since 0.12 and will be removed in 0.14. "
                    "Please use the combination year='2007' and image_set='test' instead."
                )
                year = "2007"
            else:
                raise ValueError(
                    "In the test image set of the year 2007 only image_set='test' is allowed. "
                    "For all other image sets use year='2007' instead."
                )
        self.year = year

        valid_image_sets = ["train", "trainval", "val"]
        if year == "2007":
            valid_image_sets.append("test")
        self.image_set = verify_str_arg(image_set, "image_set", valid_image_sets)

        key = "2007-test" if year == "2007" and image_set == "test" else year
        dataset_year_dict = DATASET_YEAR_DICT[key]

        self.url = dataset_year_dict["url"]
        self.filename = dataset_year_dict["filename"]
        self.md5 = dataset_year_dict["md5"]

        base_dir = dataset_year_dict["base_dir"]
        voc_root = os.path.join(self.root, base_dir)

        if download:
            download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.md5)

        if not os.path.isdir(voc_root):
            raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")

        splits_dir = os.path.join(voc_root, "ImageSets", self._SPLITS_DIR)
        split_f = os.path.join(splits_dir, image_set.rstrip("\n") + ".txt")
        with open(os.path.join(split_f)) as f:
            file_names = [x.strip() for x in f.readlines()]

        image_dir = os.path.join(voc_root, "JPEGImages")
        self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]

        target_dir = os.path.join(voc_root, self._TARGET_DIR)
        self.targets = [os.path.join(target_dir, x + self._TARGET_FILE_EXT) for x in file_names]

        assert len(self.images) == len(self.targets)

    def __len__(self) -> int:
        return len(self.images)


[docs]class VOCSegmentation(_VOCBase): """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset. Args: root (string): Root directory of the VOC Dataset. year (string, optional): The dataset year, supports years ``"2007"`` to ``"2012"``. image_set (string, optional): Select the image_set to use, ``"train"``, ``"trainval"`` or ``"val"``. If ``year=="2007"``, can also be ``"test"``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. """ _SPLITS_DIR = "Segmentation" _TARGET_DIR = "SegmentationClass" _TARGET_FILE_EXT = ".png" @property def masks(self) -> List[str]: return self.targets
[docs] def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is the image segmentation. """ img = Image.open(self.images[index]).convert("RGB") target = Image.open(self.masks[index]) if self.transforms is not None: img, target = self.transforms(img, target) return img, target
[docs]class VOCDetection(_VOCBase): """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Detection Dataset. Args: root (string): Root directory of the VOC Dataset. year (string, optional): The dataset year, supports years ``"2007"`` to ``"2012"``. image_set (string, optional): Select the image_set to use, ``"train"``, ``"trainval"`` or ``"val"``. If ``year=="2007"``, can also be ``"test"``. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. (default: alphabetic indexing of VOC's 20 classes). transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, required): A function/transform that takes in the target and transforms it. transforms (callable, optional): A function/transform that takes input sample and its target as entry and returns a transformed version. """ _SPLITS_DIR = "Main" _TARGET_DIR = "Annotations" _TARGET_FILE_EXT = ".xml" @property def annotations(self) -> List[str]: return self.targets
[docs] def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a dictionary of the XML tree. """ img = Image.open(self.images[index]).convert("RGB") target = self.parse_voc_xml(ET_parse(self.annotations[index]).getroot()) if self.transforms is not None: img, target = self.transforms(img, target) return img, target
@staticmethod def parse_voc_xml(node: ET_Element) -> Dict[str, Any]: voc_dict: Dict[str, Any] = {} children = list(node) if children: def_dic: Dict[str, Any] = collections.defaultdict(list) for dc in map(VOCDetection.parse_voc_xml, children): for ind, v in dc.items(): def_dic[ind].append(v) if node.tag == "annotation": def_dic["object"] = [def_dic["object"]] voc_dict = {node.tag: {ind: v[0] if len(v) == 1 else v for ind, v in def_dic.items()}} if node.text: text = node.text.strip() if not children: voc_dict[node.tag] = text return voc_dict

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources