Shortcuts

RandomCrop

class torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')[source]

Crop the given image at a random location. If the image is torch Tensor, it is expected to have […, H, W] shape, where … means an arbitrary number of leading dimensions, but if non-constant padding is used, the input is expected to have at most 2 leading dimensions

Parameters
  • size (sequence or int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).

  • padding (int or sequence, optional) –

    Optional padding on each border of the image. Default is None. If a single int is provided this is used to pad all borders. If sequence of length 2 is provided this is the padding on left/right and top/bottom respectively. If a sequence of length 4 is provided this is the padding for the left, top, right and bottom borders respectively.

    Note

    In torchscript mode padding as single int is not supported, use a sequence of length 1: [padding, ].

  • pad_if_needed (boolean) – It will pad the image if smaller than the desired size to avoid raising an exception. Since cropping is done after padding, the padding seems to be done at a random offset.

  • fill (number or str or tuple) – Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant. Only number is supported for torch Tensor. Only int or str or tuple value is supported for PIL Image.

  • padding_mode (str) –

    Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

    • constant: pads with a constant value, this value is specified with fill

    • edge: pads with the last value at the edge of the image. If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2

    • reflect: pads with reflection of image without repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2]

    • symmetric: pads with reflection of image repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3]

Examples using RandomCrop:

forward(img)[source]
Parameters

img (PIL Image or Tensor) – Image to be cropped.

Returns

Cropped image.

Return type

PIL Image or Tensor

static get_params(img: torch.Tensor, output_size: Tuple[int, int])Tuple[int, int, int, int][source]

Get parameters for crop for a random crop.

Parameters
  • img (PIL Image or Tensor) – Image to be cropped.

  • output_size (tuple) – Expected output size of the crop.

Returns

params (i, j, h, w) to be passed to crop for random crop.

Return type

tuple

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources