Source code for torchvision.models.vision_transformer
import math
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, List, NamedTuple, Optional
import torch
import torch.nn as nn
from .._internally_replaced_utils import load_state_dict_from_url
from ..ops.misc import ConvNormActivation
from ..utils import _log_api_usage_once
__all__ = [
"VisionTransformer",
"vit_b_16",
"vit_b_32",
"vit_l_16",
"vit_l_32",
]
model_urls = {
"vit_b_16": "https://download.pytorch.org/models/vit_b_16-c867db91.pth",
"vit_b_32": "https://download.pytorch.org/models/vit_b_32-d86f8d99.pth",
"vit_l_16": "https://download.pytorch.org/models/vit_l_16-852ce7e3.pth",
"vit_l_32": "https://download.pytorch.org/models/vit_l_32-c7638314.pth",
}
class ConvStemConfig(NamedTuple):
out_channels: int
kernel_size: int
stride: int
norm_layer: Callable[..., nn.Module] = nn.BatchNorm2d
activation_layer: Callable[..., nn.Module] = nn.ReLU
class MLPBlock(nn.Sequential):
"""Transformer MLP block."""
def __init__(self, in_dim: int, mlp_dim: int, dropout: float):
super().__init__()
self.linear_1 = nn.Linear(in_dim, mlp_dim)
self.act = nn.GELU()
self.dropout_1 = nn.Dropout(dropout)
self.linear_2 = nn.Linear(mlp_dim, in_dim)
self.dropout_2 = nn.Dropout(dropout)
nn.init.xavier_uniform_(self.linear_1.weight)
nn.init.xavier_uniform_(self.linear_2.weight)
nn.init.normal_(self.linear_1.bias, std=1e-6)
nn.init.normal_(self.linear_2.bias, std=1e-6)
class EncoderBlock(nn.Module):
"""Transformer encoder block."""
def __init__(
self,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
dropout: float,
attention_dropout: float,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
):
super().__init__()
self.num_heads = num_heads
# Attention block
self.ln_1 = norm_layer(hidden_dim)
self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True)
self.dropout = nn.Dropout(dropout)
# MLP block
self.ln_2 = norm_layer(hidden_dim)
self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout)
def forward(self, input: torch.Tensor):
torch._assert(input.dim() == 3, f"Expected (seq_length, batch_size, hidden_dim) got {input.shape}")
x = self.ln_1(input)
x, _ = self.self_attention(query=x, key=x, value=x, need_weights=False)
x = self.dropout(x)
x = x + input
y = self.ln_2(x)
y = self.mlp(y)
return x + y
class Encoder(nn.Module):
"""Transformer Model Encoder for sequence to sequence translation."""
def __init__(
self,
seq_length: int,
num_layers: int,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
dropout: float,
attention_dropout: float,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
):
super().__init__()
# Note that batch_size is on the first dim because
# we have batch_first=True in nn.MultiAttention() by default
self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02)) # from BERT
self.dropout = nn.Dropout(dropout)
layers: OrderedDict[str, nn.Module] = OrderedDict()
for i in range(num_layers):
layers[f"encoder_layer_{i}"] = EncoderBlock(
num_heads,
hidden_dim,
mlp_dim,
dropout,
attention_dropout,
norm_layer,
)
self.layers = nn.Sequential(layers)
self.ln = norm_layer(hidden_dim)
def forward(self, input: torch.Tensor):
torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
input = input + self.pos_embedding
return self.ln(self.layers(self.dropout(input)))
class VisionTransformer(nn.Module):
"""Vision Transformer as per https://arxiv.org/abs/2010.11929."""
def __init__(
self,
image_size: int,
patch_size: int,
num_layers: int,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
dropout: float = 0.0,
attention_dropout: float = 0.0,
num_classes: int = 1000,
representation_size: Optional[int] = None,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
conv_stem_configs: Optional[List[ConvStemConfig]] = None,
):
super().__init__()
_log_api_usage_once(self)
torch._assert(image_size % patch_size == 0, "Input shape indivisible by patch size!")
self.image_size = image_size
self.patch_size = patch_size
self.hidden_dim = hidden_dim
self.mlp_dim = mlp_dim
self.attention_dropout = attention_dropout
self.dropout = dropout
self.num_classes = num_classes
self.representation_size = representation_size
self.norm_layer = norm_layer
if conv_stem_configs is not None:
# As per https://arxiv.org/abs/2106.14881
seq_proj = nn.Sequential()
prev_channels = 3
for i, conv_stem_layer_config in enumerate(conv_stem_configs):
seq_proj.add_module(
f"conv_bn_relu_{i}",
ConvNormActivation(
in_channels=prev_channels,
out_channels=conv_stem_layer_config.out_channels,
kernel_size=conv_stem_layer_config.kernel_size,
stride=conv_stem_layer_config.stride,
norm_layer=conv_stem_layer_config.norm_layer,
activation_layer=conv_stem_layer_config.activation_layer,
),
)
prev_channels = conv_stem_layer_config.out_channels
seq_proj.add_module(
"conv_last", nn.Conv2d(in_channels=prev_channels, out_channels=hidden_dim, kernel_size=1)
)
self.conv_proj: nn.Module = seq_proj
else:
self.conv_proj = nn.Conv2d(
in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size
)
seq_length = (image_size // patch_size) ** 2
# Add a class token
self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
seq_length += 1
self.encoder = Encoder(
seq_length,
num_layers,
num_heads,
hidden_dim,
mlp_dim,
dropout,
attention_dropout,
norm_layer,
)
self.seq_length = seq_length
heads_layers: OrderedDict[str, nn.Module] = OrderedDict()
if representation_size is None:
heads_layers["head"] = nn.Linear(hidden_dim, num_classes)
else:
heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size)
heads_layers["act"] = nn.Tanh()
heads_layers["head"] = nn.Linear(representation_size, num_classes)
self.heads = nn.Sequential(heads_layers)
if isinstance(self.conv_proj, nn.Conv2d):
# Init the patchify stem
fan_in = self.conv_proj.in_channels * self.conv_proj.kernel_size[0] * self.conv_proj.kernel_size[1]
nn.init.trunc_normal_(self.conv_proj.weight, std=math.sqrt(1 / fan_in))
if self.conv_proj.bias is not None:
nn.init.zeros_(self.conv_proj.bias)
elif self.conv_proj.conv_last is not None and isinstance(self.conv_proj.conv_last, nn.Conv2d):
# Init the last 1x1 conv of the conv stem
nn.init.normal_(
self.conv_proj.conv_last.weight, mean=0.0, std=math.sqrt(2.0 / self.conv_proj.conv_last.out_channels)
)
if self.conv_proj.conv_last.bias is not None:
nn.init.zeros_(self.conv_proj.conv_last.bias)
if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear):
fan_in = self.heads.pre_logits.in_features
nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in))
nn.init.zeros_(self.heads.pre_logits.bias)
if isinstance(self.heads.head, nn.Linear):
nn.init.zeros_(self.heads.head.weight)
nn.init.zeros_(self.heads.head.bias)
def _process_input(self, x: torch.Tensor) -> torch.Tensor:
n, c, h, w = x.shape
p = self.patch_size
torch._assert(h == self.image_size, "Wrong image height!")
torch._assert(w == self.image_size, "Wrong image width!")
n_h = h // p
n_w = w // p
# (n, c, h, w) -> (n, hidden_dim, n_h, n_w)
x = self.conv_proj(x)
# (n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w))
x = x.reshape(n, self.hidden_dim, n_h * n_w)
# (n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim)
# The self attention layer expects inputs in the format (N, S, E)
# where S is the source sequence length, N is the batch size, E is the
# embedding dimension
x = x.permute(0, 2, 1)
return x
def forward(self, x: torch.Tensor):
# Reshape and permute the input tensor
x = self._process_input(x)
n = x.shape[0]
# Expand the class token to the full batch
batch_class_token = self.class_token.expand(n, -1, -1)
x = torch.cat([batch_class_token, x], dim=1)
x = self.encoder(x)
# Classifier "token" as used by standard language architectures
x = x[:, 0]
x = self.heads(x)
return x
def _vision_transformer(
arch: str,
patch_size: int,
num_layers: int,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
pretrained: bool,
progress: bool,
**kwargs: Any,
) -> VisionTransformer:
image_size = kwargs.pop("image_size", 224)
model = VisionTransformer(
image_size=image_size,
patch_size=patch_size,
num_layers=num_layers,
num_heads=num_heads,
hidden_dim=hidden_dim,
mlp_dim=mlp_dim,
**kwargs,
)
if pretrained:
if arch not in model_urls:
raise ValueError(f"No checkpoint is available for model type '{arch}'!")
state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
model.load_state_dict(state_dict)
return model
[docs]def vit_b_16(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VisionTransformer:
"""
Constructs a vit_b_16 architecture from
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vision_transformer(
arch="vit_b_16",
patch_size=16,
num_layers=12,
num_heads=12,
hidden_dim=768,
mlp_dim=3072,
pretrained=pretrained,
progress=progress,
**kwargs,
)
[docs]def vit_b_32(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VisionTransformer:
"""
Constructs a vit_b_32 architecture from
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vision_transformer(
arch="vit_b_32",
patch_size=32,
num_layers=12,
num_heads=12,
hidden_dim=768,
mlp_dim=3072,
pretrained=pretrained,
progress=progress,
**kwargs,
)
[docs]def vit_l_16(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VisionTransformer:
"""
Constructs a vit_l_16 architecture from
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vision_transformer(
arch="vit_l_16",
patch_size=16,
num_layers=24,
num_heads=16,
hidden_dim=1024,
mlp_dim=4096,
pretrained=pretrained,
progress=progress,
**kwargs,
)
[docs]def vit_l_32(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VisionTransformer:
"""
Constructs a vit_l_32 architecture from
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _vision_transformer(
arch="vit_l_32",
patch_size=32,
num_layers=24,
num_heads=16,
hidden_dim=1024,
mlp_dim=4096,
pretrained=pretrained,
progress=progress,
**kwargs,
)
def interpolate_embeddings(
image_size: int,
patch_size: int,
model_state: "OrderedDict[str, torch.Tensor]",
interpolation_mode: str = "bicubic",
reset_heads: bool = False,
) -> "OrderedDict[str, torch.Tensor]":
"""This function helps interpolating positional embeddings during checkpoint loading,
especially when you want to apply a pre-trained model on images with different resolution.
Args:
image_size (int): Image size of the new model.
patch_size (int): Patch size of the new model.
model_state (OrderedDict[str, torch.Tensor]): State dict of the pre-trained model.
interpolation_mode (str): The algorithm used for upsampling. Default: bicubic.
reset_heads (bool): If true, not copying the state of heads. Default: False.
Returns:
OrderedDict[str, torch.Tensor]: A state dict which can be loaded into the new model.
"""
# Shape of pos_embedding is (1, seq_length, hidden_dim)
pos_embedding = model_state["encoder.pos_embedding"]
n, seq_length, hidden_dim = pos_embedding.shape
if n != 1:
raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}")
new_seq_length = (image_size // patch_size) ** 2 + 1
# Need to interpolate the weights for the position embedding.
# We do this by reshaping the positions embeddings to a 2d grid, performing
# an interpolation in the (h, w) space and then reshaping back to a 1d grid.
if new_seq_length != seq_length:
# The class token embedding shouldn't be interpolated so we split it up.
seq_length -= 1
new_seq_length -= 1
pos_embedding_token = pos_embedding[:, :1, :]
pos_embedding_img = pos_embedding[:, 1:, :]
# (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length)
pos_embedding_img = pos_embedding_img.permute(0, 2, 1)
seq_length_1d = int(math.sqrt(seq_length))
torch._assert(seq_length_1d * seq_length_1d == seq_length, "seq_length is not a perfect square!")
# (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d)
pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d)
new_seq_length_1d = image_size // patch_size
# Perform interpolation.
# (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d)
new_pos_embedding_img = nn.functional.interpolate(
pos_embedding_img,
size=new_seq_length_1d,
mode=interpolation_mode,
align_corners=True,
)
# (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length)
new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length)
# (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim)
new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1)
new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1)
model_state["encoder.pos_embedding"] = new_pos_embedding
if reset_heads:
model_state_copy: "OrderedDict[str, torch.Tensor]" = OrderedDict()
for k, v in model_state.items():
if not k.startswith("heads"):
model_state_copy[k] = v
model_state = model_state_copy
return model_state