[docs]classStanfordCars(VisionDataset):"""`Stanford Cars <https://ai.stanford.edu/~jkrause/cars/car_dataset.html>`_ Dataset The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144 training images and 8,041 testing images, where each class has been split roughly in a 50-50 split .. note:: This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format. Args: root (string): Root directory of dataset split (string, optional): The dataset split, supports ``"train"`` (default) or ``"test"``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again."""def__init__(self,root:str,split:str="train",transform:Optional[Callable]=None,target_transform:Optional[Callable]=None,download:bool=False,)->None:try:importscipy.ioassioexceptImportError:raiseRuntimeError("Scipy is not found. This dataset needs to have scipy installed: pip install scipy")super().__init__(root,transform=transform,target_transform=target_transform)self._split=verify_str_arg(split,"split",("train","test"))self._base_folder=pathlib.Path(root)/"stanford_cars"devkit=self._base_folder/"devkit"ifself._split=="train":self._annotations_mat_path=devkit/"cars_train_annos.mat"self._images_base_path=self._base_folder/"cars_train"else:self._annotations_mat_path=self._base_folder/"cars_test_annos_withlabels.mat"self._images_base_path=self._base_folder/"cars_test"ifdownload:self.download()ifnotself._check_exists():raiseRuntimeError("Dataset not found. You can use download=True to download it")self._samples=[(str(self._images_base_path/annotation["fname"]),annotation["class"]-1,# Original target mapping starts from 1, hence -1)forannotationinsio.loadmat(self._annotations_mat_path,squeeze_me=True)["annotations"]]self.classes=sio.loadmat(str(devkit/"cars_meta.mat"),squeeze_me=True)["class_names"].tolist()self.class_to_idx={cls:ifori,clsinenumerate(self.classes)}def__len__(self)->int:returnlen(self._samples)
[docs]def__getitem__(self,idx:int)->Tuple[Any,Any]:"""Returns pil_image and class_id for given index"""image_path,target=self._samples[idx]pil_image=Image.open(image_path).convert("RGB")ifself.transformisnotNone:pil_image=self.transform(pil_image)ifself.target_transformisnotNone:target=self.target_transform(target)returnpil_image,target
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.