[docs]classOmniglot(VisionDataset):"""`Omniglot <https://github.com/brendenlake/omniglot>`_ Dataset. Args: root (string): Root directory of dataset where directory ``omniglot-py`` exists. background (bool, optional): If True, creates dataset from the "background" set, otherwise creates from the "evaluation" set. This terminology is defined by the authors. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset zip files from the internet and puts it in root directory. If the zip files are already downloaded, they are not downloaded again. """folder="omniglot-py"download_url_prefix="https://raw.githubusercontent.com/brendenlake/omniglot/master/python"zips_md5={"images_background":"68d2efa1b9178cc56df9314c21c6e718","images_evaluation":"6b91aef0f799c5bb55b94e3f2daec811",}def__init__(self,root:str,background:bool=True,transform:Optional[Callable]=None,target_transform:Optional[Callable]=None,download:bool=False,)->None:super().__init__(join(root,self.folder),transform=transform,target_transform=target_transform)self.background=backgroundifdownload:self.download()ifnotself._check_integrity():raiseRuntimeError("Dataset not found or corrupted. You can use download=True to download it")self.target_folder=join(self.root,self._get_target_folder())self._alphabets=list_dir(self.target_folder)self._characters:List[str]=sum(([join(a,c)forcinlist_dir(join(self.target_folder,a))]forainself._alphabets),[])self._character_images=[[(image,idx)forimageinlist_files(join(self.target_folder,character),".png")]foridx,characterinenumerate(self._characters)]self._flat_character_images:List[Tuple[str,int]]=sum(self._character_images,[])def__len__(self)->int:returnlen(self._flat_character_images)
[docs]def__getitem__(self,index:int)->Tuple[Any,Any]:""" Args: index (int): Index Returns: tuple: (image, target) where target is index of the target character class. """image_name,character_class=self._flat_character_images[index]image_path=join(self.target_folder,self._characters[character_class],image_name)image=Image.open(image_path,mode="r").convert("L")ifself.transform:image=self.transform(image)ifself.target_transform:character_class=self.target_transform(character_class)returnimage,character_class
def_check_integrity(self)->bool:zip_filename=self._get_target_folder()ifnotcheck_integrity(join(self.root,zip_filename+".zip"),self.zips_md5[zip_filename]):returnFalsereturnTruedefdownload(self)->None:ifself._check_integrity():print("Files already downloaded and verified")returnfilename=self._get_target_folder()zip_filename=filename+".zip"url=self.download_url_prefix+"/"+zip_filenamedownload_and_extract_archive(url,self.root,filename=zip_filename,md5=self.zips_md5[filename])def_get_target_folder(self)->str:return"images_background"ifself.backgroundelse"images_evaluation"
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.