Shortcuts

torcheval.metrics.functional.binary_recall_at_fixed_precision

torcheval.metrics.functional.binary_recall_at_fixed_precision(input: Tensor, target: Tensor, *, min_precision: float) Tuple[Tensor, Tensor]

Returns the highest possible recall value given the minimum precision for binary classification tasks.

Its class version is torcheval.metrics.BinaryRecallAtFixedPrecision.

Parameters:
  • input (Tensor) – Tensor of label predictions It should be probabilities with shape of (n_samples, )

  • target (Tensor) – Tensor of ground truth labels with shape of (n_samples, )

  • min_precision (float) – Minimum precision threshold

Returns:

  • recall (Tensor): Max recall value given the minimum precision

  • thresholds (Tensor): Corresponding threshold to max recall

Return type:

Tuple

Examples:

>>> import torch
>>> from torcheval.metrics.functional import binary_recall_at_fixed_precision
>>> input = torch.tensor([0.1, 0.4, 0.6, 0.6, 0.6, 0.35, 0.8])
>>> target = torch.tensor([0, 0, 1, 1, 1, 1, 1])
>>> binary_recall_at_fixed_precision(input, target, min_precision=0.5)
(torch.tensor(1.0), torch.tensor(0.35))

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources