torcheval.metrics.functional.binary_binned_auroc¶
- torcheval.metrics.functional.binary_binned_auroc(input: Tensor, target: Tensor, *, num_tasks: int = 1, threshold: int | List[float] | Tensor = 200) Tuple[Tensor, Tensor] ¶
Compute AUROC, which is the area under the ROC Curve, for binary classification. Its class version is
torcheval.metrics.BinaryBinnedAUROC
.- Parameters:
input (Tensor) – Tensor of label predictions It should be predicted label, probabilities or logits with shape of (num_tasks, n_sample) or (n_sample, ).
target (Tensor) – Tensor of ground truth labels with shape of (num_tasks, n_sample) or (n_sample, ).
num_tasks (int) – Number of tasks that need binary_binned_auroc calculation. Default value is 1. binary_binned_auroc for each task will be calculated independently.
threshold – A integeter representing number of bins, a list of thresholds, or a tensor of thresholds.
Examples:
>>> import torch >>> from torcheval.metrics.functional import binary_binned_auroc >>> input = torch.tensor([0.1, 0.5, 0.7, 0.8]) >>> target = torch.tensor([1, 0, 1, 1]) >>> binary_binned_auroc(input, target, threshold=5) (tensor(0.5) tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])) >>> input = torch.tensor([0.1, 0.5, 0.7, 0.8]) >>> target = torch.tensor([1, 0, 1, 1]) >>> threshold = tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]) >>> binary_binned_auroc(input, target, threshold=threshold) (tensor(0.5) tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])) >>> input = torch.tensor([[1, 1, 1, 0], [0.1, 0.5, 0.7, 0.8]]) >>> target = torch.tensor([[1, 0, 1, 0], [1, 0, 1, 1]]) >>> binary_auroc(input, target, num_tasks=2, threshold=5) (tensor([0.7500, 0.5000], tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]))