torcheval.metrics.WindowedWeightedCalibration¶
- class torcheval.metrics.WindowedWeightedCalibration(*, num_tasks: int = 1, max_num_updates: int = 100, enable_lifetime: bool = True, device: device | None = None)¶
Compute weighted calibration metric. When weight is not provided, it calculates the unweighted calibration. Its functional version is
torcheval.metrics.functional.weighted_calibration()
.weighted_calibration = sum(input * weight) / sum(target * weight)
- Parameters:
num_tasks (int) – Number of tasks that need WeightedCalibration calculations. Default value is 1.
max_num_updates (int) – The max window size that can accommodate the number of updates.
enable_lifetime (bool) – A boolean indicator whether to calculate lifetime values.
- Raises:
ValueError – If value of weight is neither a
float
nor aint
nor atorch.Tensor
that matches the input tensor size.
Examples:
>>> import torch >>> from torcheval.metrics import WindowedWeightedCalibration >>> metric = WindowedWeightedCalibration(max_num_updates=2, enable_lifetime=False) >>> metric.update(torch.tensor([0.8, 0.4]),torch.tensor([1, 1])) >>> metric.update(torch.tensor([0.3, 0.8]),torch.tensor([0, 0])) >>> metric.update(torch.tensor([0.7, 0.6]),torch.tensor([1, 0])) >>> metric.compute() tensor([2.4], dtype=torch.float64) >>> metric = WindowedWeightedCalibration(max_num_updates=2, enable_lifetime=True) >>> metric.update(torch.tensor([0.8, 0.4]),torch.tensor([1, 1])) >>> metric.update(torch.tensor([0.3, 0.8]),torch.tensor([0, 0])) >>> metric.update(torch.tensor([0.7, 0.6]),torch.tensor([1, 0])) >>> metric.compute() ( tensor([1.2], dtype=torch.float64) tensor([2.4], dtype=torch.float64) ) >>> metric = WindowedWeightedCalibration(num_tasks=2) >>> metric.update(torch.tensor([[0.8, 0.4], [0.8, 0.7]]),torch.tensor([[1, 1], [0, 1]]),) >>> metric.compute() tensor([0.6000, 1.5000], dtype=torch.float64)
- __init__(*, num_tasks: int = 1, max_num_updates: int = 100, enable_lifetime: bool = True, device: device | None = None) None ¶
Initialize a metric object and its internal states.
Use
self._add_state()
to initialize state variables of your metric class. The state variables should be eithertorch.Tensor
, a list oftorch.Tensor
, a dictionary withtorch.Tensor
as values, or a deque oftorch.Tensor
.
Methods
__init__
(*[, num_tasks, max_num_updates, ...])Initialize a metric object and its internal states.
compute
()Return the weighted calibration.
load_state_dict
(state_dict[, strict])Loads metric state variables from state_dict.
merge_state
(metrics)Merge the metric state with its counterparts from other metric instances.
reset
()Reset the metric state variables to their default value.
state_dict
()Save metric state variables in state_dict.
to
(device, *args, **kwargs)Move tensors in metric state variables to device.
update
(input, target[, weight])Update the metric state with the total sum of weighted inputs and the total sum of weighted labels.
Attributes
device
The last input device of
Metric.to()
.