torcheval.metrics.ClickThroughRate¶
- class torcheval.metrics.ClickThroughRate(*, num_tasks: int = 1, device: device | None = None)¶
Compute the click through rate given click events. Its functional version is
torcheval.metrics.functional.click_through_rate
.- Parameters:
num_tasks (int) – Number of tasks that need weighted_calibration calculation. Default value is 1.
Examples:
>>> import torch >>> from torcheval.metrics.ranking import ClickThroughRate >>> metric = ClickThroughRate() >>> input = torch.tensor([0, 1, 0, 1, 1, 0, 0, 1]) >>> metric.update(input) >>> metric.compute() tensor([0.5]) >>> metric = ClickThroughRate() >>> weights = torch.tensor([1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) >>> metric.update(input, weights) >>> metric.compute() tensor([0.58333]) >>> metric = ClickThroughRate(num_tasks=2) >>> input = torch.tensor([[0, 1, 0, 1], [1, 0, 0, 1]]) >>> weights = torch.tensor([[1.0, 2.0, 1.0, 2.0],[1.0, 2.0, 1.0, 1.0]]) >>> metric.update(input, weights) >>> metric.compute() tensor([0.6667, 0.4])
- __init__(*, num_tasks: int = 1, device: device | None = None) None ¶
Initialize a metric object and its internal states.
Use
self._add_state()
to initialize state variables of your metric class. The state variables should be eithertorch.Tensor
, a list oftorch.Tensor
, a dictionary withtorch.Tensor
as values, or a deque oftorch.Tensor
.
Methods
__init__
(*[, num_tasks, device])Initialize a metric object and its internal states.
compute
()Return the stacked click through rank scores.
load_state_dict
(state_dict[, strict])Loads metric state variables from state_dict.
merge_state
(metrics)Merge the metric state with its counterparts from other metric instances.
reset
()Reset the metric state variables to their default value.
state_dict
()Save metric state variables in state_dict.
to
(device, *args, **kwargs)Move tensors in metric state variables to device.
update
(input[, weights])Update the metric state with new inputs.
Attributes
device
The last input device of
Metric.to()
.