torcheval.metrics.BinaryRecall¶
- class torcheval.metrics.BinaryRecall(*, threshold: float = 0.5, device: device | None = None)¶
Compute the recall score for binary classification tasks, which is calculated as the ratio of the true positives and the sum of true positives and false negatives. Its functional version is
torcheval.metrics.functional.binary_recall()
. We cast NaNs to 0 when classes have zero instances in the ground-truth labels (when TP + FN = 0).- Parameters:
threshold (float, default 0.5) – Threshold for converting input into predicted labels for each sample.
torch.where(input < threshold, 0, 1)
will be applied to theinput
.
Examples:
>>> import torch >>> from torcheval.metrics.classification import BinaryRecall >>> metric = BinaryRecall() >>> input = torch.tensor([0, 0, 1, 1]) >>> target = torch.tensor([0, 1, 1, 1]) >>> metric.update(input, target) >>> metric.compute() tensor(0.6667) # 2 / 3 >>> metric = BinaryRecall() >>> input = torch.tensor([0, 0.2, 0.4, 0.7]) >>> target = torch.tensor([1, 0, 1, 1]) >>> metric.update(input, target) >>> metric.compute() tensor(0.3333) # 1 / 3 >>> metric = BinaryRecall(threshold=0.4) >>> input = torch.tensor([0, 0.2, 0.4, 0.7]) >>> target = torch.tensor([1, 0, 1, 1]) >>> metric.update(input, target) >>> metric.compute() tensor(0.5000) # 1 / 2
- __init__(*, threshold: float = 0.5, device: device | None = None) None ¶
Initialize a metric object and its internal states.
Use
self._add_state()
to initialize state variables of your metric class. The state variables should be eithertorch.Tensor
, a list oftorch.Tensor
, a dictionary withtorch.Tensor
as values, or a deque oftorch.Tensor
.
Methods
__init__
(*[, threshold, device])Initialize a metric object and its internal states.
compute
()Return the recall score.
load_state_dict
(state_dict[, strict])Loads metric state variables from state_dict.
merge_state
(metrics)Implement this method to update the current metric's state variables to be the merged states of the current metric and input metrics.
reset
()Reset the metric state variables to their default value.
state_dict
()Save metric state variables in state_dict.
to
(device, *args, **kwargs)Move tensors in metric state variables to device.
update
(input, target)Update states with the ground truth labels and predictions.
Attributes
device
The last input device of
Metric.to()
.