torcheval.metrics.functional.mean_squared_error¶
-
torcheval.metrics.functional.
mean_squared_error
(input: Tensor, target: Tensor, *, sample_weight: Optional[Tensor] = None, multioutput: str = 'uniform_average') Tensor [source]¶ Compute Mean Squared Error, which is the mean of squared error of input and target Its class version is
torcheval.metrics.MeanSquaredError
.Parameters: - input (Tensor) – Tensor of predicted values with shape of (n_sample, n_output).
- target (Tensor) – Tensor of ground truth values with shape of (n_sample, n_output).
- sample_weight (Optional) – Tensor of sample weights with shape of (n_sample, ). Defaults to None.
- multioutput (Optional) –
'uniform_average'
[default]:- Return scores of all outputs are averaged with uniform weight.
'raw_values'
:- Return a full set of scores.
Raises: ValueError –
- If value of multioutput does not exist in (
raw_values
,uniform_average
). - If the dimension of input or target is not 1D or 2D. - If the input and target do not have the same size. - If the first dimension of input, target and sample_weight are not the same.
Examples:
>>> import torch >>> from torcheval.metrics.function import mean_squared_error >>> input = torch.tensor([0.9, 0.5, 0.3, 0.5]) >>> target = torch.tensor([0.5, 0.8, 0.2, 0.8]) >>> mean_squared_error(input, target) tensor(0.0875) >>> input = torch.tensor([[0.9, 0.5], [0.3, 0.5]]) >>> target = torch.tensor([[0.5, 0.8], [0.2, 0.8]]) >>> mean_squared_error(input, target) tensor(0.0875) >>> input = torch.tensor([[0.9, 0.5], [0.3, 0.5]]) >>> target = torch.tensor([[0.5, 0.8], [0.2, 0.8]]) >>> mean_squared_error(input, target, multioutput="raw_values") tensor([0.0850, 0.0900]) >>> input = torch.tensor([[0.9, 0.5], [0.3, 0.5]]) >>> target = torch.tensor([[0.5, 0.8], [0.2, 0.8]]) >>> mean_squared_error(input, target, sample_weight=torch.tensor([0.2, 0.8])) tensor(0.0650)