torcheval.metrics.functional.binary_binned_precision_recall_curve¶
-
torcheval.metrics.functional.
binary_binned_precision_recall_curve
(input: Tensor, target: Tensor, *, threshold: Union[int, List[float], Tensor] = 100) Tuple[Tensor, Tensor, Tensor] [source]¶ Compute precision recall curve with given thresholds. Its class version is
torcheval.metrics.BinaryBinnedPrecisionRecallCurve
. See alsomulticlass_binned_precision_recall_curve
Parameters: - input (Tensor) – Tensor of label predictions It should be probabilities or logits with shape of (n_sample, ).
- target (Tensor) – Tensor of ground truth labels with shape of (n_samples, ).
- threshold – a integer representing number of bins, a list of thresholds, or a tensor of thresholds.
Returns: - precision (Tensor): Tensor of precision result. Its shape is (n_thresholds + 1, )
- recall (Tensor): Tensor of recall result. Its shape is (n_thresholds + 1, )
- thresholds (Tensor): Tensor of threshold. Its shape is (n_thresholds, )
Return type: Tuple
Examples:
>>> import torch >>> from torcheval.metrics.functional import binary_binned_precision_recall_curve >>> input = torch.tensor([0.2, 0.8, 0.5, 0.9]) >>> target = torch.tensor([0, 1, 0, 1]) >>> threshold = 5 >>> binary_binned_precision_recall_curve(input, target, threshold) (tensor([0.5000, 0.6667, 0.6667, 1.0000, 1.0000, 1.0000]), tensor([1., 1., 1., 1., 0., 0.]), tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])) >>> input = torch.tensor([0.2, 0.3, 0.4, 0.5]) >>> target = torch.tensor([0, 0, 1, 1]) >>> threshold = torch.tensor([0.0000, 0.2500, 0.7500, 1.0000]) >>> binary_binned_precision_recall_curve(input, target, threshold) (tensor([0.5000, 0.6667, 1.0000, 1.0000, 1.0000]), tensor([1., 1., 0., 0., 0.]), tensor([0.0000, 0.2500, 0.7500, 1.0000]))