torcheval.metrics.WindowedBinaryAUROC¶
-
class
torcheval.metrics.
WindowedBinaryAUROC
(*, num_tasks: int = 1, max_num_samples: int = 100, device: Optional[device] = None)[source]¶ The windowed version of BinaryAUROC. It is calculated from the input and target of the last window_size number of samples. Compute AUROC, which is the area under the ROC Curve, for binary classification.
Examples:
>>> import torch >>> from torcheval.metrics import WindowedBinaryAUROC >>> metric = WindowedBinaryAUROC(max_num_samples=4) >>> input = torch.tensor([0.2, 0.5, 0.1, 0.5, 0.7, 0.8]) >>> target = torch.tensor([0, 1, 1, 0, 1, 1]) >>> metric.update(input, target) >>> metric.inputs tensor([0.1, 0.5, 0.7, 0.8]) >>> metric.targets tensor([1, 0, 1, 1]) >>> metric.compute() tensor(0.6667) >>> metric = WindowedBinaryAUROC(max_num_samples=5, num_tasks=2) >>> metric.update(torch.tensor([[0.2, 0.3], [0.5, 0.1]]), torch.tensor([[1.0, 0.0], [0.0, 1.0]])) >>> metric.update(torch.tensor([[0.8, 0.3], [0.6, 0.1]]), torch.tensor([[1.0, 1.0], [1.0, 0.0]])) >>> metric.update(torch.tensor([[0.5, 0.1], [0.3, 0.9]]), torch.tensor([[0.0, 1.0], [0.0, 0.0]])) >>> metric.inputs tensor([[0.1000, 0.3000, 0.8000, 0.3000, 0.5000], [0.9000, 0.1000, 0.6000, 0.1000, 0.3000]]) >>> metric.compute() tensor([0.4167, 0.5000])
-
__init__
(*, num_tasks: int = 1, max_num_samples: int = 100, device: Optional[device] = None) None [source]¶ Initialize a metric object and its internal states.
Use
self._add_state()
to initialize state variables of your metric class. The state variables should be eithertorch.Tensor
, a list oftorch.Tensor
, or a dictionary withtorch.Tensor
as values
Methods
__init__
(*[, num_tasks, max_num_samples, device])Initialize a metric object and its internal states. compute
()Return AUROC. load_state_dict
(state_dict[, strict])Loads metric state variables from state_dict. merge_state
(metrics)Merge the metric state with its counterparts from other metric instances. reset
()Reset the metric state variables to their default value. state_dict
()Save metric state variables in state_dict. to
(device, *args, **kwargs)Move tensors in metric state variables to device. update
(input, target[, weight])Update states with the ground truth labels and predictions. Attributes
device
The last input device of Metric.to()
.-