• Docs >
  • Metrics >
  • torcheval.metrics.BinaryRecallAtFixedPrecision
Shortcuts

torcheval.metrics.BinaryRecallAtFixedPrecision

class torcheval.metrics.BinaryRecallAtFixedPrecision(*, min_precision: float, device: Optional[device] = None)[source]

Returns the highest possible recall value give the minimum precision for binary classification tasks.

Its functional version is torcheval.metrics.functional.binary_recall_at_fixed_precision(). See also MultilabelRecallAtFixedPrecision

Parameters:min_precision (float) – Minimum precision threshold

Examples:

>>> import torch
>>> from torcheval.metrics import BinaryRecallAtFixedPrecision
>>> metric = BinaryRecallAtFixedPrecision(min_precision=0.5)
>>> input = torch.tensor([0.1, 0.4, 0.6, 0.6, 0.6, 0.35, 0.8])
>>> target = torch.tensor([0, 0, 1, 1, 1, 1, 1])
>>> metric.update(input, target)
>>> metric.compute()
(torch.tensor(1.0), torch.tensor(0.35))
__init__(*, min_precision: float, device: Optional[device] = None) None[source]

Initialize a metric object and its internal states.

Use self._add_state() to initialize state variables of your metric class. The state variables should be either torch.Tensor, a list of torch.Tensor, or a dictionary with torch.Tensor as values

Methods

__init__(*, min_precision[, device]) Initialize a metric object and its internal states.
compute() Implement this method to compute and return the final metric value from state variables.
load_state_dict(state_dict[, strict]) Loads metric state variables from state_dict.
merge_state(metrics) Implement this method to update the current metric's state variables to be the merged states of the current metric and input metrics.
reset() Reset the metric state variables to their default value.
state_dict() Save metric state variables in state_dict.
to(device, *args, **kwargs) Move tensors in metric state variables to device.
update(input, target) Implement this method to update the state variables of your metric class.

Attributes

device The last input device of Metric.to().

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources