Shortcuts

Source code for torcheval.metrics.ranking.weighted_calibration

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-ignore-all-errors[16]: Undefined attribute of metric states.

from typing import Iterable, Optional, TypeVar, Union

import torch
from torcheval.metrics.functional.ranking.weighted_calibration import (
    _weighted_calibration_update,
)
from torcheval.metrics.metric import Metric

TWeightedCalibration = TypeVar("TWeightedCalibration")


[docs]class WeightedCalibration(Metric[torch.Tensor]): """ Compute weighted calibration metric. When weight is not provided, it calculates the unweighted calibration. Its functional version is :func:`torcheval.metrics.functional.weighted_calibration`. weighted_calibration = sum(input * weight) / sum(target * weight) Args: num_tasks (int): Number of tasks that need WeightedCalibration calculations. Default value is 1. Raises: ValueError: If value of weight is neither a ``float`` nor a ``int`` nor a ``torch.Tensor`` that matches the input tensor size. Examples:: >>> import torch >>> from torcheval.metrics import WeightedCalibration >>> metric = WeightedCalibration() >>> metric.update(torch.tensor([0.8, 0.4, 0.3, 0.8, 0.7, 0.6]),torch.tensor([1, 1, 0, 0, 1, 0])) >>> metric.compute() tensor([1.2], dtype=torch.float64) >>> metric = WeightedCalibration() >>> metric.update(torch.tensor([0.8, 0.4, 0.3, 0.8, 0.7, 0.6]),torch.tensor([1, 1, 0, 0, 1, 0]), torch.tensor([0.5, 1., 2., 0.4, 1.3, 0.9])) >>> metric.compute() tensor([1.1321], dtype=torch.float64) >>> metric = WeightedCalibration(num_tasks=2) >>> metric.update(torch.tensor([[0.8, 0.4], [0.8, 0.7]]),torch.tensor([[1, 1], [0, 1]]),) >>> metric.compute() tensor([0.6000, 1.5000], dtype=torch.float64) """
[docs] def __init__( self: TWeightedCalibration, *, num_tasks: int = 1, device: Optional[torch.device] = None, ) -> None: super().__init__(device=device) if num_tasks < 1: raise ValueError( "`num_tasks` value should be greater than and equal to 1, but received {num_tasks}. " ) self.num_tasks = num_tasks self._add_state( "weighted_input_sum", torch.zeros(self.num_tasks, dtype=torch.float64, device=self.device), ) self._add_state( "weighted_target_sum", torch.zeros(self.num_tasks, dtype=torch.float64, device=self.device), )
@torch.inference_mode() # pyre-ignore[14]: `update` overrides method defined in `Metric` inconsistently. def update( self: TWeightedCalibration, input: torch.Tensor, target: torch.Tensor, weight: Union[float, int, torch.Tensor] = 1.0, ) -> TWeightedCalibration: """ Update the metric state with the total sum of weighted inputs and the total sum of weighted labels. Args: input (Tensor): Predicted unnormalized scores (often referred to as logits) or binary class probabilities (num_tasks, num_samples). target (Tensor): Ground truth binary class indices (num_tasks, num_samples). weight (Optional): Float or Int or Tensor of input weights. It is default to 1.0. If weight is a Tensor, its size should match the input tensor size. """ weighted_input_sum, weighted_target_sum = _weighted_calibration_update( input, target, weight, num_tasks=self.num_tasks ) self.weighted_input_sum += weighted_input_sum self.weighted_target_sum += weighted_target_sum return self @torch.inference_mode() def compute(self: TWeightedCalibration) -> torch.Tensor: """ Return the weighted calibration. If no ``update()`` calls are made before ``compute()`` is called, return an empty tensor. Returns: Tensor: The return value of weighted calibration for each task (num_tasks,). """ if torch.any(self.weighted_target_sum == 0.0): return torch.empty(0) weighted_calibration = self.weighted_input_sum / self.weighted_target_sum return weighted_calibration @torch.inference_mode() def merge_state( self: TWeightedCalibration, metrics: Iterable[TWeightedCalibration] ) -> TWeightedCalibration: """ Merge the metric state with its counterparts from other metric instances. Args: metrics (Iterable[Metric]): metric instances whose states are to be merged. """ for metric in metrics: self.weighted_input_sum += metric.weighted_input_sum.to(self.device) self.weighted_target_sum += metric.weighted_target_sum.to(self.device) return self

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources