Source code for torcheval.metrics.ranking.weighted_calibration
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-ignore-all-errors[16]: Undefined attribute of metric states.
from typing import Iterable, Optional, TypeVar, Union
import torch
from torcheval.metrics.functional.ranking.weighted_calibration import (
_weighted_calibration_update,
)
from torcheval.metrics.metric import Metric
TWeightedCalibration = TypeVar("TWeightedCalibration")
[docs]class WeightedCalibration(Metric[torch.Tensor]):
"""
Compute weighted calibration metric. When weight is not provided, it calculates the unweighted calibration.
Its functional version is :func:`torcheval.metrics.functional.weighted_calibration`.
weighted_calibration = sum(input * weight) / sum(target * weight)
Args:
num_tasks (int): Number of tasks that need WeightedCalibration calculations. Default value
is 1.
Raises:
ValueError: If value of weight is neither a ``float`` nor a ``int`` nor a ``torch.Tensor`` that matches the input tensor size.
Examples::
>>> import torch
>>> from torcheval.metrics import WeightedCalibration
>>> metric = WeightedCalibration()
>>> metric.update(torch.tensor([0.8, 0.4, 0.3, 0.8, 0.7, 0.6]),torch.tensor([1, 1, 0, 0, 1, 0]))
>>> metric.compute()
tensor([1.2], dtype=torch.float64)
>>> metric = WeightedCalibration()
>>> metric.update(torch.tensor([0.8, 0.4, 0.3, 0.8, 0.7, 0.6]),torch.tensor([1, 1, 0, 0, 1, 0]), torch.tensor([0.5, 1., 2., 0.4, 1.3, 0.9]))
>>> metric.compute()
tensor([1.1321], dtype=torch.float64)
>>> metric = WeightedCalibration(num_tasks=2)
>>> metric.update(torch.tensor([[0.8, 0.4], [0.8, 0.7]]),torch.tensor([[1, 1], [0, 1]]),)
>>> metric.compute()
tensor([0.6000, 1.5000], dtype=torch.float64)
"""
[docs] def __init__(
self: TWeightedCalibration,
*,
num_tasks: int = 1,
device: Optional[torch.device] = None,
) -> None:
super().__init__(device=device)
if num_tasks < 1:
raise ValueError(
"`num_tasks` value should be greater than and equal to 1, but received {num_tasks}. "
)
self.num_tasks = num_tasks
self._add_state(
"weighted_input_sum",
torch.zeros(self.num_tasks, dtype=torch.float64, device=self.device),
)
self._add_state(
"weighted_target_sum",
torch.zeros(self.num_tasks, dtype=torch.float64, device=self.device),
)
@torch.inference_mode()
# pyre-ignore[14]: `update` overrides method defined in `Metric` inconsistently.
def update(
self: TWeightedCalibration,
input: torch.Tensor,
target: torch.Tensor,
weight: Union[float, int, torch.Tensor] = 1.0,
) -> TWeightedCalibration:
"""
Update the metric state with the total sum of weighted inputs and the total sum of weighted labels.
Args:
input (Tensor): Predicted unnormalized scores (often referred to as logits) or
binary class probabilities (num_tasks, num_samples).
target (Tensor): Ground truth binary class indices (num_tasks, num_samples).
weight (Optional): Float or Int or Tensor of input weights. It is default to 1.0. If weight is a Tensor, its size should match the input tensor size.
"""
weighted_input_sum, weighted_target_sum = _weighted_calibration_update(
input, target, weight, num_tasks=self.num_tasks
)
self.weighted_input_sum += weighted_input_sum
self.weighted_target_sum += weighted_target_sum
return self
@torch.inference_mode()
def compute(self: TWeightedCalibration) -> torch.Tensor:
"""
Return the weighted calibration. If no ``update()`` calls are made before
``compute()`` is called, return an empty tensor.
Returns:
Tensor: The return value of weighted calibration for each task (num_tasks,).
"""
if torch.any(self.weighted_target_sum == 0.0):
return torch.empty(0)
weighted_calibration = self.weighted_input_sum / self.weighted_target_sum
return weighted_calibration
@torch.inference_mode()
def merge_state(
self: TWeightedCalibration, metrics: Iterable[TWeightedCalibration]
) -> TWeightedCalibration:
"""
Merge the metric state with its counterparts from other metric instances.
Args:
metrics (Iterable[Metric]): metric instances whose states are to be merged.
"""
for metric in metrics:
self.weighted_input_sum += metric.weighted_input_sum.to(self.device)
self.weighted_target_sum += metric.weighted_target_sum.to(self.device)
return self