torcharrow.functional.bucketize¶
- torcharrow.functional.bucketize(value_col: NumericalColumn, borders: Union[ListColumn, List[Union[int, float]]]) NumericalColumn ¶
Apply bucketization for input feature. This is a common operation in recommendation domain to convert dense features into sparse features.
- Parameters:
value_col (Numeric column that defines dense feature) –
borders (Border values for the discretized sparse features) –
Examples
>>> import torcharrow as ta >>> from torcharrow import functional >>> a = ta.column([1, 2, 3, 5, 8, 10, 11]) >>> functional.bucketize(a, [2, 5, 10]) 0 0 1 0 2 1 3 1 4 2 5 2 6 3 dtype: Int32(nullable=True), length: 7, null_count: 0