torcharrow.DataFrame.describe¶
- DataFrame.describe(percentiles=None, include=None, exclude=None)¶
Generate descriptive statistics.
- Parameters:
array-like (percentiles -) – Defines which percentiles to calculate. If None, uses [25,50,75].
None (default) – Defines which percentiles to calculate. If None, uses [25,50,75].
(default) (exclude - array-like of dtypes or None) –
- A white list of data types to include in the result. Here are the options:
A list-like of dtypes : Limits the results to the provided data types.
None (default) : The result will include all numeric columns.
optional –
- A white list of data types to include in the result. Here are the options:
A list-like of dtypes : Limits the results to the provided data types.
None (default) : The result will include all numeric columns.
(default) –
- An exclusion list of data types to omit from the result. Ignored for Series. Here are the options:
A list-like of dtypes : Excludes the provided data types from the result.
None (default) : The result will exclude nothing.
optional –
- An exclusion list of data types to omit from the result. Ignored for Series. Here are the options:
A list-like of dtypes : Excludes the provided data types from the result.
None (default) : The result will exclude nothing.
Examples
>>> import torcharrow as ta >>> df = ta.dataframe({"a": [1, 2, 3, 4, 5], "b": [6, 7, 8, 9, 10] }) >>> df.describe() index metric a b ------- -------- ------- -------- 0 count 5 5 1 mean 3 8 2 std 1.58114 1.58114 3 min 1 6 4 25% 2 7 5 50% 3 8 6 75% 4 9 7 max 5 10 dtype: Struct([Field('metric', string), Field('a', float32), Field('b', float32)]), count: 8, null_count: 0