torcharrow.Column.to_tensor¶
- Column.to_tensor(conversion=None)¶
Convert to PyTorch containers (Tensor, PackedList, PackedMap, etc)
- Parameters:
conversion (TensorConversion, or dict) – conversion can only be a dict type for DataFrame.to_tensor(). The dict maps from column name to the conversion methods. For column names not contained in dict, default PyTorch conversion will be used.
Examples
>>> import torcharrow as ta >>> import torcharrow.pytorch as tap >>> df = ta.dataframe({"label_ids": [0, 1], "token_ids": [[1, 2, 3, 4, 5], [101, 102]]})
>>> df index label_ids token_ids ------- ----------- --------------- 0 0 [1, 2, 3, 4, 5] 1 1 [101, 102] dtype: Struct([Field('label_ids', int64), Field('token_ids', List(int64))]), count: 2, null_count: 0
>>> df.to_tensor({"token_ids": tap.PadSequence(padding_value=-1)}) TorchArrowStruct_0( label_ids=tensor([0, 1]), token_ids=tensor([ [ 1, 2, 3, 4, 5], [101, 102, -1, -1, -1]] ) )