Source code for torchtext.datasets.yahooanswers
from torchtext.utils import download_from_url, extract_archive, unicode_csv_reader
from torchtext.data.datasets_utils import _RawTextIterableDataset
from torchtext.data.datasets_utils import _wrap_split_argument
from torchtext.data.datasets_utils import _add_docstring_header
from torchtext.data.datasets_utils import _find_match
import os
import io
URL = 'https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9Qhbd2JNdDBsQUdocVU'
MD5 = 'f3f9899b997a42beb24157e62e3eea8d'
NUM_LINES = {
'train': 1400000,
'test': 60000,
}
_PATH = 'yahoo_answers_csv.tar.gz'
[docs]@_add_docstring_header(num_lines=NUM_LINES, num_classes=10)
@_wrap_split_argument(('train', 'test'))
def YahooAnswers(root, split):
def _create_data_from_csv(data_path):
with io.open(data_path, encoding="utf8") as f:
reader = unicode_csv_reader(f)
for row in reader:
yield int(row[0]), ' '.join(row[1:])
dataset_tar = download_from_url(URL, root=root,
path=os.path.join(root, _PATH),
hash_value=MD5, hash_type='md5')
extracted_files = extract_archive(dataset_tar)
path = _find_match(split + '.csv', extracted_files)
return _RawTextIterableDataset("YahooAnswers", NUM_LINES[split],
_create_data_from_csv(path))