Shortcuts

Source code for torchtext.datasets.rte

# Copyright (c) Facebook, Inc. and its affiliates.
import csv
import os
from functools import partial

from torchdata.datapipes.iter import FileOpener, IterableWrapper

# we import HttpReader from _download_hooks so we can swap out public URLs
# with interal URLs when the dataset is used within Facebook
from torchtext._download_hooks import HttpReader
from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
    _create_dataset_directory,
    _wrap_split_argument,
)


URL = "https://dl.fbaipublicfiles.com/glue/data/RTE.zip"

MD5 = "bef554d0cafd4ab6743488101c638539"

NUM_LINES = {
    "train": 2490,
    "dev": 277,
    "test": 3000,
}

_PATH = "RTE.zip"

DATASET_NAME = "RTE"

_EXTRACTED_FILES = {
    "train": os.path.join("RTE", "train.tsv"),
    "dev": os.path.join("RTE", "dev.tsv"),
    "test": os.path.join("RTE", "test.tsv"),
}

MAP_LABELS = {"entailment": 0, "not_entailment": 1}


def _filepath_fn(root, x=None):
    return os.path.join(root, os.path.basename(x))


def _extracted_filepath_fn(root, split, _=None):
    return os.path.join(root, _EXTRACTED_FILES[split])


def _filter_fn(split, x):
    return _EXTRACTED_FILES[split] in x[0]


def _modify_res(split, x):
    if split == "test":
        return (x[1], x[2])
    else:
        return (MAP_LABELS[x[3]], x[1], x[2])


[docs]@_create_dataset_directory(dataset_name=DATASET_NAME) @_wrap_split_argument(("train", "dev", "test")) def RTE(root, split): """RTE Dataset For additional details refer to https://aclweb.org/aclwiki/Recognizing_Textual_Entailment Number of lines per split: - train: 2490 - dev: 277 - test: 3000 Args: root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache') split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `dev`, `test`) :returns: DataPipe that yields tuple of text and/or label (0 and 1). The `test` split only returns text. :rtype: Union[(int, str, str), (str, str)] """ # TODO Remove this after removing conditional dependency if not is_module_available("torchdata"): raise ModuleNotFoundError( "Package `torchdata` not found. Please install following instructions at `https://github.com/pytorch/data`" ) url_dp = IterableWrapper([URL]) cache_compressed_dp = url_dp.on_disk_cache( filepath_fn=partial(_filepath_fn, root), hash_dict={_filepath_fn(root, URL): MD5}, hash_type="md5", ) cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(mode="wb", same_filepath_fn=True) cache_decompressed_dp = cache_compressed_dp.on_disk_cache(filepath_fn=partial(_extracted_filepath_fn, root, split)) cache_decompressed_dp = ( FileOpener(cache_decompressed_dp, mode="b").load_from_zip().filter(partial(_filter_fn, split)) ) cache_decompressed_dp = cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True) data_dp = FileOpener(cache_decompressed_dp, encoding="utf-8") parsed_data = data_dp.parse_csv(skip_lines=1, delimiter="\t", quoting=csv.QUOTE_NONE).map( partial(_modify_res, split) ) return parsed_data.shuffle().set_shuffle(False).sharding_filter()

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources