Shortcuts

Source code for torchtext.datasets.qqp

import os
from functools import partial

from torchdata.datapipes.iter import FileOpener, IterableWrapper
from torchtext._download_hooks import HttpReader
from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import _create_dataset_directory

URL = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv"

MD5 = "b6d5672bd9dc1e66ab2bb020ebeafb8d"

_PATH = "quora_duplicate_questions.tsv"

NUM_LINES = {"train": 404290}

DATASET_NAME = "QQP"


def _filepath_fn(root, _=None):
    return os.path.join(root, _PATH)


def _modify_res(x):
    return (int(x[-1]), x[3], x[4])


[docs]@_create_dataset_directory(dataset_name=DATASET_NAME) def QQP(root: str): """QQP dataset .. warning:: using datapipes is still currently subject to a few caveats. if you wish to use this dataset with shuffling, multi-processing, or distributed learning, please see :ref:`this note <datapipes_warnings>` for further instructions. For additional details refer to https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs Args: root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache') :returns: DataPipe that yields rows from QQP dataset (label (int), question1 (str), question2 (str)) :rtype: (int, str, str) """ if not is_module_available("torchdata"): raise ModuleNotFoundError( "Package `torchdata` not found. Please install following instructions at https://github.com/pytorch/data" ) url_dp = IterableWrapper([URL]) cache_dp = url_dp.on_disk_cache( filepath_fn=partial(_filepath_fn, root), hash_dict={_filepath_fn(root): MD5}, hash_type="md5", ) cache_dp = HttpReader(cache_dp).end_caching(mode="wb", same_filepath_fn=True) cache_dp = FileOpener(cache_dp, encoding="utf-8") # some context stored at top of the file needs to be removed parsed_data = cache_dp.parse_csv(skip_lines=1, delimiter="\t").map(_modify_res) return parsed_data.shuffle().set_shuffle(False).sharding_filter()

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources