Source code for torchtext.datasets.conll2000chunking
import os
from functools import partial
from typing import Union, Tuple
from torchdata.datapipes.iter import FileOpener, IterableWrapper
from torchtext._download_hooks import HttpReader
from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
_wrap_split_argument,
_create_dataset_directory,
)
URL = {
"train": "https://www.clips.uantwerpen.be/conll2000/chunking/train.txt.gz",
"test": "https://www.clips.uantwerpen.be/conll2000/chunking/test.txt.gz",
}
MD5 = {
"train": "6969c2903a1f19a83569db643e43dcc8",
"test": "a916e1c2d83eb3004b38fc6fcd628939",
}
NUM_LINES = {
"train": 8936,
"test": 2012,
}
_EXTRACTED_FILES = {"train": "train.txt", "test": "test.txt"}
DATASET_NAME = "CoNLL2000Chunking"
def _filepath_fn(root, split, _=None):
return os.path.join(root, os.path.basename(URL[split]))
def _extracted_filepath_fn(root, split, _=None):
return os.path.join(root, _EXTRACTED_FILES[split])
[docs]@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "test"))
def CoNLL2000Chunking(root: str, split: Union[Tuple[str], str]):
"""CoNLL2000Chunking Dataset
.. warning::
using datapipes is still currently subject to a few caveats. if you wish
to use this dataset with shuffling, multi-processing, or distributed
learning, please see :ref:`this note <datapipes_warnings>` for further
instructions.
For additional details refer to https://www.clips.uantwerpen.be/conll2000/chunking/
Number of lines per split:
- train: 8936
- test: 2012
Args:
root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache')
split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `test`)
:returns: DataPipe that yields list of words along with corresponding Parts-of-speech tag and chunk tag
:rtype: [list(str), list(str), list(str)]
"""
if not is_module_available("torchdata"):
raise ModuleNotFoundError(
"Package `torchdata` not found. Please install following instructions at https://github.com/pytorch/data"
)
url_dp = IterableWrapper([URL[split]])
# Cache and check HTTP response
cache_compressed_dp = url_dp.on_disk_cache(
filepath_fn=partial(_filepath_fn, root, split),
hash_dict={_filepath_fn(root, split): MD5[split]},
hash_type="md5",
)
cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(mode="wb", same_filepath_fn=True)
# Cache and check the gzip extraction for relevant split
cache_decompressed_dp = cache_compressed_dp.on_disk_cache(filepath_fn=partial(_extracted_filepath_fn, root, split))
cache_decompressed_dp = FileOpener(cache_decompressed_dp, mode="b").extract(file_type="gzip")
cache_decompressed_dp = cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True)
data_dp = FileOpener(cache_decompressed_dp, encoding="utf-8")
return data_dp.readlines().read_iob(sep=" ").shuffle().set_shuffle(False).sharding_filter()