Source code for torchtext.datasets.udpos
import os
from functools import partial
from typing import Union, Tuple
from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
_wrap_split_argument,
_create_dataset_directory,
)
if is_module_available("torchdata"):
from torchdata.datapipes.iter import FileOpener, IterableWrapper
from torchtext._download_hooks import HttpReader
URL = "https://bitbucket.org/sivareddyg/public/downloads/en-ud-v2.zip"
MD5 = "bdcac7c52d934656bae1699541424545"
NUM_LINES = {
"train": 12543,
"valid": 2002,
"test": 2077,
}
_EXTRACTED_FILES = {"train": "train.txt", "valid": "dev.txt", "test": "test.txt"}
DATASET_NAME = "UDPOS"
def _filepath_fn(root, _=None):
return os.path.join(root, os.path.basename(URL))
def _extracted_filepath_fn(root, split, _=None):
return os.path.join(root, _EXTRACTED_FILES[split])
def _filter_fn(split, x):
return _EXTRACTED_FILES[split] in x[0]
[docs]@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "valid", "test"))
def UDPOS(root: str, split: Union[Tuple[str], str]):
"""UDPOS Dataset
.. warning::
using datapipes is still currently subject to a few caveats. if you wish
to use this dataset with shuffling, multi-processing, or distributed
learning, please see :ref:`this note <datapipes_warnings>` for further
instructions.
Number of lines per split:
- train: 12543
- valid: 2002
- test: 2077
Args:
root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache')
split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `valid`, `test`)
:returns: DataPipe that yields list of words along with corresponding parts-of-speech tags
:rtype: [list(str), list(str)]
"""
if not is_module_available("torchdata"):
raise ModuleNotFoundError(
"Package `torchdata` not found. Please install following instructions at https://github.com/pytorch/data"
)
url_dp = IterableWrapper([URL])
cache_compressed_dp = url_dp.on_disk_cache(
filepath_fn=partial(_filepath_fn, root),
hash_dict={_filepath_fn(root): MD5},
hash_type="md5",
)
cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(mode="wb", same_filepath_fn=True)
cache_decompressed_dp = cache_compressed_dp.on_disk_cache(filepath_fn=partial(_extracted_filepath_fn, root, split))
cache_decompressed_dp = (
FileOpener(cache_decompressed_dp, mode="b").load_from_zip().filter(partial(_filter_fn, split))
)
cache_decompressed_dp = cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True)
data_dp = FileOpener(cache_decompressed_dp, encoding="utf-8")
return data_dp.readlines().read_iob().shuffle().set_shuffle(False).sharding_filter()