Source code for torchtext.datasets.stsb
import csv
import os
from functools import partial
from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
_create_dataset_directory,
_wrap_split_argument,
)
if is_module_available("torchdata"):
from torchdata.datapipes.iter import FileOpener, IterableWrapper
# we import HttpReader from _download_hooks so we can swap out public URLs
# with interal URLs when the dataset is used within Facebook
from torchtext._download_hooks import HttpReader
URL = "http://ixa2.si.ehu.es/stswiki/images/4/48/Stsbenchmark.tar.gz"
MD5 = "4eb0065aba063ef77873d3a9c8088811"
NUM_LINES = {
"train": 5749,
"dev": 1500,
"test": 1379,
}
_PATH = "Stsbenchmark.tar.gz"
DATASET_NAME = "STSB"
_EXTRACTED_FILES = {
"train": os.path.join("stsbenchmark", "sts-train.csv"),
"dev": os.path.join("stsbenchmark", "sts-dev.csv"),
"test": os.path.join("stsbenchmark", "sts-test.csv"),
}
def _filepath_fn(root, x=_PATH):
return os.path.join(root, os.path.basename(x))
def _extracted_filepath_fn(root, split, _=None):
return _filepath_fn(root, _EXTRACTED_FILES[split])
def _filter_fn(split, x):
return _EXTRACTED_FILES[split] in x[0]
def _modify_res(x):
return (int(x[3]), float(x[4]), x[5], x[6])
[docs]@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "dev", "test"))
def STSB(root, split):
"""STSB Dataset
.. warning::
using datapipes is still currently subject to a few caveats. if you wish
to use this dataset with shuffling, multi-processing, or distributed
learning, please see :ref:`this note <datapipes_warnings>` for further
instructions.
For additional details refer to https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
Number of lines per split:
- train: 5749
- dev: 1500
- test: 1379
Args:
root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache')
split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `dev`, `test`)
:returns: DataPipe that yields tuple of (index (int), label (float), sentence1 (str), sentence2 (str))
:rtype: (int, float, str, str)
"""
# TODO Remove this after removing conditional dependency
if not is_module_available("torchdata"):
raise ModuleNotFoundError(
"Package `torchdata` not found. Please install following instructions at https://github.com/pytorch/data"
)
url_dp = IterableWrapper([URL])
cache_compressed_dp = url_dp.on_disk_cache(
filepath_fn=partial(_filepath_fn, root),
hash_dict={_filepath_fn(root, URL): MD5},
hash_type="md5",
)
cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(mode="wb", same_filepath_fn=True)
cache_decompressed_dp = cache_compressed_dp.on_disk_cache(filepath_fn=partial(_extracted_filepath_fn, root, split))
cache_decompressed_dp = (
FileOpener(cache_decompressed_dp, mode="b").read_from_tar().filter(partial(_filter_fn, split))
)
cache_decompressed_dp = cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True)
data_dp = FileOpener(cache_decompressed_dp, encoding="utf-8")
parsed_data = data_dp.parse_csv(delimiter="\t", quoting=csv.QUOTE_NONE).map(_modify_res)
return parsed_data.shuffle().set_shuffle(False).sharding_filter()