Source code for torchtext.datasets.rte
# Copyright (c) Facebook, Inc. and its affiliates.
import csv
import os
from functools import partial
from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
_create_dataset_directory,
_wrap_split_argument,
)
if is_module_available("torchdata"):
from torchdata.datapipes.iter import FileOpener, IterableWrapper
# we import HttpReader from _download_hooks so we can swap out public URLs
# with interal URLs when the dataset is used within Facebook
from torchtext._download_hooks import HttpReader
URL = "https://dl.fbaipublicfiles.com/glue/data/RTE.zip"
MD5 = "bef554d0cafd4ab6743488101c638539"
NUM_LINES = {
"train": 67349,
"dev": 872,
"test": 1821,
}
_PATH = "RTE.zip"
DATASET_NAME = "RTE"
_EXTRACTED_FILES = {
"train": os.path.join("RTE", "train.tsv"),
"dev": os.path.join("RTE", "dev.tsv"),
"test": os.path.join("RTE", "test.tsv"),
}
MAP_LABELS = {"entailment": 0, "not_entailment": 1}
def _filepath_fn(root, x=None):
return os.path.join(root, os.path.basename(x))
def _extracted_filepath_fn(root, split, _=None):
return os.path.join(root, _EXTRACTED_FILES[split])
def _filter_fn(split, x):
return _EXTRACTED_FILES[split] in x[0]
def _modify_res(split, x):
if split == "test":
return (x[1], x[2])
else:
return (MAP_LABELS[x[3]], x[1], x[2])
[docs]@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "dev", "test"))
def RTE(root, split):
"""RTE Dataset
For additional details refer to https://aclweb.org/aclwiki/Recognizing_Textual_Entailment
Number of lines per split:
- train: 67349
- dev: 872
- test: 1821
Args:
root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache')
split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `dev`, `test`)
:returns: DataPipe that yields tuple of text and/or label (0 and 1). The `test` split only returns text.
:rtype: Union[(int, str, str), (str, str)]
"""
# TODO Remove this after removing conditional dependency
if not is_module_available("torchdata"):
raise ModuleNotFoundError(
"Package `torchdata` not found. Please install following instructions at `https://github.com/pytorch/data`"
)
url_dp = IterableWrapper([URL])
cache_compressed_dp = url_dp.on_disk_cache(
filepath_fn=partial(_filepath_fn, root),
hash_dict={_filepath_fn(root, URL): MD5},
hash_type="md5",
)
cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(mode="wb", same_filepath_fn=True)
cache_decompressed_dp = cache_compressed_dp.on_disk_cache(filepath_fn=partial(_extracted_filepath_fn, root, split))
cache_decompressed_dp = (
FileOpener(cache_decompressed_dp, mode="b").load_from_zip().filter(partial(_filter_fn, split))
)
cache_decompressed_dp = cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True)
data_dp = FileOpener(cache_decompressed_dp, encoding="utf-8")
parsed_data = data_dp.parse_csv(skip_lines=1, delimiter="\t", quoting=csv.QUOTE_NONE).map(
partial(_modify_res, split)
)
return parsed_data.shuffle().set_shuffle(False).sharding_filter()