Shortcuts

Source code for torchtext.vocab.vectors

import gzip
import logging
import os
import tarfile
import zipfile
from functools import partial
from urllib.request import urlretrieve

import torch
from tqdm import tqdm

from ..utils import reporthook

logger = logging.getLogger(__name__)


def _infer_shape(f):
    num_lines, vector_dim = 0, None
    for line in f:
        if vector_dim is None:
            row = line.rstrip().split(b" ")
            vector = row[1:]
            # Assuming word, [vector] format
            if len(vector) > 2:
                # The header present in some (w2v) formats contains two elements.
                vector_dim = len(vector)
                num_lines += 1  # First element read
        else:
            num_lines += 1
    f.seek(0)
    return num_lines, vector_dim


[docs]class Vectors(object):
[docs] def __init__(self, name, cache=None, url=None, unk_init=None, max_vectors=None): """ Args: name: name of the file that contains the vectors cache: directory for cached vectors url: url for download if vectors not found in cache unk_init (callback): by default, initialize out-of-vocabulary word vectors to zero vectors; can be any function that takes in a Tensor and returns a Tensor of the same size max_vectors (int): this can be used to limit the number of pre-trained vectors loaded. Most pre-trained vector sets are sorted in the descending order of word frequency. Thus, in situations where the entire set doesn't fit in memory, or is not needed for another reason, passing `max_vectors` can limit the size of the loaded set. """ cache = ".vector_cache" if cache is None else cache self.itos = None self.stoi = None self.vectors = None self.dim = None self.unk_init = torch.Tensor.zero_ if unk_init is None else unk_init self.cache(name, cache, url=url, max_vectors=max_vectors)
def __getitem__(self, token): if token in self.stoi: return self.vectors[self.stoi[token]] else: return self.unk_init(torch.Tensor(self.dim)) def cache(self, name, cache, url=None, max_vectors=None): import ssl ssl._create_default_https_context = ssl._create_unverified_context if os.path.isfile(name): path = name if max_vectors: file_suffix = "_{}.pt".format(max_vectors) else: file_suffix = ".pt" path_pt = os.path.join(cache, os.path.basename(name)) + file_suffix else: path = os.path.join(cache, name) if max_vectors: file_suffix = "_{}.pt".format(max_vectors) else: file_suffix = ".pt" path_pt = path + file_suffix if not os.path.isfile(path_pt): if not os.path.isfile(path) and url: logger.info("Downloading vectors from {}".format(url)) if not os.path.exists(cache): os.makedirs(cache) dest = os.path.join(cache, os.path.basename(url)) if not os.path.isfile(dest): with tqdm(unit="B", unit_scale=True, miniters=1, desc=dest) as t: try: urlretrieve(url, dest, reporthook=reporthook(t)) except KeyboardInterrupt as e: # remove the partial zip file os.remove(dest) raise e logger.info("Extracting vectors into {}".format(cache)) ext = os.path.splitext(dest)[1][1:] if ext == "zip": with zipfile.ZipFile(dest, "r") as zf: zf.extractall(cache) elif ext == "gz": if dest.endswith(".tar.gz"): with tarfile.open(dest, "r:gz") as tar: tar.extractall(path=cache) if not os.path.isfile(path): raise RuntimeError("no vectors found at {}".format(path)) logger.info("Loading vectors from {}".format(path)) ext = os.path.splitext(path)[1][1:] if ext == "gz": open_file = gzip.open else: open_file = open vectors_loaded = 0 with open_file(path, "rb") as f: num_lines, dim = _infer_shape(f) if not max_vectors or max_vectors > num_lines: max_vectors = num_lines itos, vectors, dim = [], torch.zeros((max_vectors, dim)), None for line in tqdm(f, total=max_vectors): # Explicitly splitting on " " is important, so we don't # get rid of Unicode non-breaking spaces in the vectors. entries = line.rstrip().split(b" ") word, entries = entries[0], entries[1:] if dim is None and len(entries) > 1: dim = len(entries) elif len(entries) == 1: logger.warning( "Skipping token {} with 1-dimensional " "vector {}; likely a header".format(word, entries) ) continue elif dim != len(entries): raise RuntimeError( "Vector for token {} has {} dimensions, but previously " "read vectors have {} dimensions. All vectors must have " "the same number of dimensions.".format(word, len(entries), dim) ) try: if isinstance(word, bytes): word = word.decode("utf-8") except UnicodeDecodeError: logger.info("Skipping non-UTF8 token {}".format(repr(word))) continue vectors[vectors_loaded] = torch.tensor([float(x) for x in entries]) vectors_loaded += 1 itos.append(word) if vectors_loaded == max_vectors: break self.itos = itos self.stoi = {word: i for i, word in enumerate(itos)} self.vectors = torch.Tensor(vectors).view(-1, dim) self.dim = dim logger.info("Saving vectors to {}".format(path_pt)) if not os.path.exists(cache): os.makedirs(cache) torch.save((self.itos, self.stoi, self.vectors, self.dim), path_pt) else: logger.info("Loading vectors from {}".format(path_pt)) self.itos, self.stoi, self.vectors, self.dim = torch.load(path_pt) def __len__(self): return len(self.vectors)
[docs] def get_vecs_by_tokens(self, tokens, lower_case_backup=False): """Look up embedding vectors of tokens. Args: tokens: a token or a list of tokens. if `tokens` is a string, returns a 1-D tensor of shape `self.dim`; if `tokens` is a list of strings, returns a 2-D tensor of shape=(len(tokens), self.dim). lower_case_backup : Whether to look up the token in the lower case. If False, each token in the original case will be looked up; if True, each token in the original case will be looked up first, if not found in the keys of the property `stoi`, the token in the lower case will be looked up. Default: False. Examples: >>> examples = ['chip', 'baby', 'Beautiful'] >>> vec = text.vocab.GloVe(name='6B', dim=50) >>> ret = vec.get_vecs_by_tokens(examples, lower_case_backup=True) """ to_reduce = False if not isinstance(tokens, list): tokens = [tokens] to_reduce = True if not lower_case_backup: indices = [self[token] for token in tokens] else: indices = [self[token] if token in self.stoi else self[token.lower()] for token in tokens] vecs = torch.stack(indices) return vecs[0] if to_reduce else vecs
[docs]class GloVe(Vectors): url = { "42B": "http://nlp.stanford.edu/data/glove.42B.300d.zip", "840B": "http://nlp.stanford.edu/data/glove.840B.300d.zip", "twitter.27B": "http://nlp.stanford.edu/data/glove.twitter.27B.zip", "6B": "http://nlp.stanford.edu/data/glove.6B.zip", } def __init__(self, name="840B", dim=300, **kwargs): url = self.url[name] name = "glove.{}.{}d.txt".format(name, str(dim)) super(GloVe, self).__init__(name, url=url, **kwargs)
[docs]class FastText(Vectors): url_base = "https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.{}.vec" def __init__(self, language="en", **kwargs): url = self.url_base.format(language) name = os.path.basename(url) super(FastText, self).__init__(name, url=url, **kwargs)
[docs]class CharNGram(Vectors): name = "charNgram.txt" url = "http://www.logos.t.u-tokyo.ac.jp/~hassy/publications/arxiv2016jmt/" "jmt_pre-trained_embeddings.tar.gz" def __init__(self, **kwargs): super(CharNGram, self).__init__(self.name, url=self.url, **kwargs) def __getitem__(self, token): vector = torch.Tensor(1, self.dim).zero_() if token == "<unk>": return self.unk_init(vector) chars = ["#BEGIN#"] + list(token) + ["#END#"] num_vectors = 0 for n in [2, 3, 4]: end = len(chars) - n + 1 grams = [chars[i : (i + n)] for i in range(end)] for gram in grams: gram_key = "{}gram-{}".format(n, "".join(gram)) if gram_key in self.stoi: vector += self.vectors[self.stoi[gram_key]] num_vectors += 1 if num_vectors > 0: vector /= num_vectors else: vector = self.unk_init(vector) return vector
pretrained_aliases = { "charngram.100d": partial(CharNGram), "fasttext.en.300d": partial(FastText, language="en"), "fasttext.simple.300d": partial(FastText, language="simple"), "glove.42B.300d": partial(GloVe, name="42B", dim="300"), "glove.840B.300d": partial(GloVe, name="840B", dim="300"), "glove.twitter.27B.25d": partial(GloVe, name="twitter.27B", dim="25"), "glove.twitter.27B.50d": partial(GloVe, name="twitter.27B", dim="50"), "glove.twitter.27B.100d": partial(GloVe, name="twitter.27B", dim="100"), "glove.twitter.27B.200d": partial(GloVe, name="twitter.27B", dim="200"), "glove.6B.50d": partial(GloVe, name="6B", dim="50"), "glove.6B.100d": partial(GloVe, name="6B", dim="100"), "glove.6B.200d": partial(GloVe, name="6B", dim="200"), "glove.6B.300d": partial(GloVe, name="6B", dim="300"), } """Mapping from string name to factory function"""

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources