Source code for torchtext.datasets.multi30k
import os
from functools import partial
from typing import Union, Tuple
from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
_wrap_split_argument,
_create_dataset_directory,
)
if is_module_available("torchdata"):
from torchdata.datapipes.iter import FileOpener, IterableWrapper
from torchtext._download_hooks import HttpReader
URL = {
"train": r"http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz",
"valid": r"http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz",
"test": r"http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/mmt16_task1_test.tar.gz",
}
MD5 = {
"train": "20140d013d05dd9a72dfde46478663ba05737ce983f478f960c1123c6671be5e",
"valid": "a7aa20e9ebd5ba5adce7909498b94410996040857154dab029851af3a866da8c",
"test": "0681be16a532912288a91ddd573594fbdd57c0fbb81486eff7c55247e35326c2",
}
_PREFIX = {
"train": "train",
"valid": "val",
"test": "test",
}
NUM_LINES = {
"train": 29000,
"valid": 1014,
"test": 1000,
}
DATASET_NAME = "Multi30k"
def _filepath_fn(root, split, _=None):
return os.path.join(root, os.path.basename(URL[split]))
def _decompressed_filepath_fn(root, split, language_pair, i, _):
return os.path.join(root, f"{_PREFIX[split]}.{language_pair[i]}")
def _filter_fn(split, language_pair, i, x):
return f"{_PREFIX[split]}.{language_pair[i]}" in x[0]
[docs]@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "valid", "test"))
def Multi30k(root: str, split: Union[Tuple[str], str], language_pair: Tuple[str] = ("de", "en")):
"""Multi30k dataset
.. warning::
using datapipes is still currently subject to a few caveats. if you wish
to use this dataset with shuffling, multi-processing, or distributed
learning, please see :ref:`this note <datapipes_warnings>` for further
instructions.
For additional details refer to https://www.statmt.org/wmt16/multimodal-task.html#task1
Number of lines per split:
- train: 29000
- valid: 1014
- test: 1000
Args:
root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache')
split: split or splits to be returned. Can be a string or tuple of strings. Default: ('train', 'valid', 'test')
language_pair: tuple or list containing src and tgt language. Available options are ('de','en') and ('en', 'de')
:return: DataPipe that yields tuple of source and target sentences
:rtype: (str, str)
"""
assert len(language_pair) == 2, "language_pair must contain only 2 elements: src and tgt language respectively"
assert tuple(sorted(language_pair)) == (
"de",
"en",
), "language_pair must be either ('de','en') or ('en', 'de')"
if not is_module_available("torchdata"):
raise ModuleNotFoundError(
"Package `torchdata` not found. Please install following instructions at https://github.com/pytorch/data"
)
url_dp = IterableWrapper([URL[split]])
cache_compressed_dp = url_dp.on_disk_cache(
filepath_fn=partial(_filepath_fn, root, split),
hash_dict={_filepath_fn(root, split): MD5[split]},
hash_type="sha256",
)
cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(mode="wb", same_filepath_fn=True)
cache_compressed_dp_1, cache_compressed_dp_2 = cache_compressed_dp.fork(num_instances=2)
src_cache_decompressed_dp = cache_compressed_dp_1.on_disk_cache(
filepath_fn=partial(_decompressed_filepath_fn, root, split, language_pair, 0)
)
src_cache_decompressed_dp = (
FileOpener(src_cache_decompressed_dp, mode="b")
.load_from_tar()
.filter(partial(_filter_fn, split, language_pair, 0))
)
src_cache_decompressed_dp = src_cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True)
tgt_cache_decompressed_dp = cache_compressed_dp_2.on_disk_cache(
filepath_fn=partial(_decompressed_filepath_fn, root, split, language_pair, 1)
)
tgt_cache_decompressed_dp = (
FileOpener(tgt_cache_decompressed_dp, mode="b")
.load_from_tar()
.filter(partial(_filter_fn, split, language_pair, 1))
)
tgt_cache_decompressed_dp = tgt_cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True)
src_data_dp = FileOpener(src_cache_decompressed_dp, encoding="utf-8").readlines(
return_path=False, strip_newline=True
)
tgt_data_dp = FileOpener(tgt_cache_decompressed_dp, encoding="utf-8").readlines(
return_path=False, strip_newline=True
)
return src_data_dp.zip(tgt_data_dp).shuffle().set_shuffle(False).sharding_filter()