Source code for torchtext.datasets.amazonreviewpolarity
from torchtext.data.datasets_utils import (
_RawTextIterableDataset,
_wrap_split_argument,
_add_docstring_header,
_download_extract_validate,
_create_dataset_directory,
_create_data_from_csv,
)
import os
import logging
URL = 'https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM'
MD5 = 'fe39f8b653cada45afd5792e0f0e8f9b'
NUM_LINES = {
'train': 3600000,
'test': 400000,
}
_PATH = 'amazon_review_polarity_csv.tar.gz'
_EXTRACTED_FILES = {
'train': f'{os.sep}'.join(['amazon_review_polarity_csv', 'train.csv']),
'test': f'{os.sep}'.join(['amazon_review_polarity_csv', 'test.csv']),
}
_EXTRACTED_FILES_MD5 = {
'train': "520937107c39a2d1d1f66cd410e9ed9e",
'test': "f4c8bded2ecbde5f996b675db6228f16"
}
DATASET_NAME = "AmazonReviewPolarity"
[docs]@_add_docstring_header(num_lines=NUM_LINES, num_classes=2)
@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(('train', 'test'))
def AmazonReviewPolarity(root, split):
path = _download_extract_validate(root, URL, MD5, os.path.join(root, _PATH), os.path.join(root, _EXTRACTED_FILES[split]),
_EXTRACTED_FILES_MD5[split], hash_type="md5")
logging.info('Creating {} data'.format(split))
return _RawTextIterableDataset(DATASET_NAME, NUM_LINES[split],
_create_data_from_csv(path))