tensordict.nn.distributions.CompositeDistribution
- class tensordict.nn.distributions.CompositeDistribution(params: TensorDictBase, distribution_map: dict, *, name_map: Optional[dict] = None, extra_kwargs=None, aggregate_probabilities: Optional[bool] = None, log_prob_key: Optional[NestedKey] = None, entropy_key: Optional[NestedKey] = None)
A composite distribution that groups multiple distributions together using the TensorDict interface.
This class allows for operations such as log_prob_composite, entropy_composite, cdf, icdf, rsample, and sample to be performed on a collection of distributions, returning a TensorDict. The input TensorDict may be modified in-place.
- Parameters:
params (TensorDictBase) – A nested key-tensor map where the root entries correspond to sample names, and the leaves are the distribution parameters. Entry names must match those specified in distribution_map.
distribution_map (Dict[NestedKey, Type[torch.distribution.Distribution]]) – Specifies the distribution types to be used. The names of the distributions should match the sample names in the TensorDict.
- Keyword Arguments:
name_map (Dict[NestedKey, NestedKey], optional) – A mapping of where each sample should be written. If not provided, the key names from distribution_map will be used.
extra_kwargs (Dict[NestedKey, Dict], optional) – A dictionary of additional keyword arguments for constructing the distributions.
aggregate_probabilities (bool, optional) –
If True, the log_prob and entropy methods will sum the probabilities and entropies of the individual distributions and return a single tensor. If False, individual log-probabilities will be stored in the input TensorDict (for log_prob) or returned as leaves of the output TensorDict (for entropy). This can be overridden at runtime by passing the aggregate_probabilities argument to log_prob and entropy. Defaults to False.
Warning
This argument will be deprecated in v0.9 when
tensordict.nn.probabilistic.composite_lp_aggregate()
will default toFalse
.log_prob_key (NestedKey, optional) –
The key where the aggregated log probability will be stored. Defaults to ‘sample_log_prob’.
Note
if
tensordict.nn.probabilistic.composite_lp_aggregate()
returnsFalse
, tbe log-probabilities will be written under (“path”, “to”, “leaf”, “<sample_name>_log_prob”) where (“path”, “to”, “leaf”, “<sample_name>”) is theNestedKey
corresponding to the leaf tensor being sampled. In that case, thelog_prob_key
argument will be ignored.entropy_key (NestedKey, optional) –
The key where the entropy will be stored. Defaults to ‘entropy’
Note
if
tensordict.nn.probabilistic.composite_lp_aggregate()
returnsFalse
, tbe entropies will be written under (“path”, “to”, “leaf”, “<sample_name>_entropy”) where (“path”, “to”, “leaf”, “<sample_name>”) is theNestedKey
corresponding to the leaf tensor being sampled. In that case, theentropy_key
argument will be ignored.
Note
The batch size of the input TensorDict containing the parameters (params) determines the batch shape of the distribution. For example, the “sample_log_prob” entry resulting from a call to log_prob will have the shape of the parameters plus any additional batch dimensions.
See also
ProbabilisticTensorDictModule
andProbabilisticTensorDictSequential
to learn how to use this class as part of a model.See also
set_composite_lp_aggregate
to control the aggregation of the log-probabilities.Examples
>>> params = TensorDict({ ... "cont": {"loc": torch.randn(3, 4), "scale": torch.rand(3, 4)}, ... ("nested", "disc"): {"logits": torch.randn(3, 10)} ... }, [3]) >>> dist = CompositeDistribution(params, ... distribution_map={"cont": d.Normal, ("nested", "disc"): d.Categorical}) >>> sample = dist.sample((4,)) >>> with set_composite_lp_aggregate(False): ... sample = dist.log_prob(sample) ... print(sample) TensorDict( fields={ cont: Tensor(shape=torch.Size([4, 3, 4]), device=cpu, dtype=torch.float32, is_shared=False), cont_log_prob: Tensor(shape=torch.Size([4, 3, 4]), device=cpu, dtype=torch.float32, is_shared=False), nested: TensorDict( fields={ disc: Tensor(shape=torch.Size([4, 3]), device=cpu, dtype=torch.int64, is_shared=False), disc_log_prob: Tensor(shape=torch.Size([4, 3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([4]), device=None, is_shared=False)}, batch_size=torch.Size([4]), device=None, is_shared=False)