from_dict
- class tensordict.from_dict(d, *, auto_batch_size: bool = False, batch_dims: Optional[int] = None, device: Optional[device] = None, batch_size: Optional[Size] = None)
Converts a dictionary to a TensorDict.
See also
TensorDictBase.from_dict()
for more information.Examples
>>> input_dict = {"a": torch.randn(3, 4), "b": torch.randn(3)} >>> print(from_dict(input_dict)) TensorDict( fields={ a: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> # nested dict: the nested TensorDict can have a different batch-size >>> # as long as its leading dims match. >>> input_dict = {"a": torch.randn(3), "b": {"c": torch.randn(3, 4)}} >>> print(from_dict(input_dict)) TensorDict( fields={ a: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3, 4]), device=None, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> # we can also use this to work out the batch sie of a tensordict >>> input_td = TensorDict({"a": torch.randn(3), "b": {"c": torch.randn(3, 4)}}, []) >>> print( from_dict(input_td)) TensorDict( fields={ a: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), b: TensorDict( fields={ c: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3, 4]), device=None, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False)