Install torch-ort¶
Pre-requisites¶
You need a machine with at least one NVIDIA or AMD GPU to install torch-ort to run ONNX Runtime for PyTorch.
You can install and run torch-ort in your local environment, or with Docker.
Run in a Python environment¶
Default dependencies¶
By default, torch-ort depends on PyTorch 1.8.1, ONNX Runtime 1.8 and CUDA 10.2.
Install CUDA 10.2
Install CuDNN 7.6
Install torch-ort and dependencies
pip install ninja
pip install torch-ort
Explicitly install for NVIDIA CUDA 10.2¶
Install CUDA 10.2
Install CuDNN 7.6
Install torch-ort and dependencies
pip install ninja
pip install torch==1.8.1
pip install --pre onnxruntime-training -f https://download.onnxruntime.ai/onnxruntime_nightly_cu102.html
pip install torch-ort
Explicitly install for NVIDIA CUDA 11.1¶
Install CUDA 11.1
Install CuDNN 8.0
Install torch-ort and dependencies
pip install ninja
pip install torch==1.8.1
pip install --pre onnxruntime-training -f https://download.onnxruntime.ai/onnxruntime_nightly_cu111.html
pip install torch-ort
Explicitly install for AMD ROCm 4.2¶
Install ROCm 4.2 base package (instructions)
Install ROCm 4.2 libraries (instructions)
Install ROCm 4.2 RCCL (instructions)
Install torch-ort and dependencies
pip install ninja
pip install --pre torch -f https://download.pytorch.org/whl/nightly/rocm4.2/torch_nightly.html
pip install --pre onnxruntime-training -f https://download.onnxruntime.ai/onnxruntime_nightly_rocm42.html
pip install torch-ort
Run using Docker¶
The docker directory contains dockerfiles for building the environment for ONNX Runtime for PyTorch.
NVIDIA GPUs¶
Ensure that the nvidia-container-toolkit
is installed.
CUDA 10.2¶
Build the docker image
docker build -f Dockerfile.ort-cu102-cudnn7-devel-ubuntu18.04 -t ort.cu102 .
Run the docker container using the image you have just built
docker run -it --gpus all --name my-experiments ort.cu102:latest /bin/bash
CUDA 11.1¶
Build the docker image
docker build -f Dockerfile.ort-cu111-cudnn8-devel-ubuntu18.04 -t ort.cu111 .
Run the docker container using the image you have just built
docker run -it --gpus all --name my-experiments ort.cu111:latest /bin/bash
AMD GPUs¶
ROCm 4.2¶
Build the docker image
docker build -f Dockerfile.ort-rocm4.2-pytorch1.8.1-ubuntu18.04 -t ort.rocm42 .
Run the docker container using the image you have just built
docker run -it --rm \ --privileged \ --device=/dev/kfd \ --device=/dev/dri \ --group-add video \ --cap-add=SYS_PTRACE \ --security-opt seccomp=unconfined \ --name my-experiments \ ort.rocm42:latest /bin/bash
Test your installation¶
Once you have created your environment, either using Python or docker, execute the following steps to validate that your installation is correct.
Download a training script
wget https://raw.githubusercontent.com/pytorch/ort/main/tests/bert_for_sequence_classification.py
Install extra dependencies
pip install wget pandas sklearn transformers
Run the training script
python ./ort/tests/bert_for_sequence_classification.py
Expected warnings
There are some warnings that are expected.