Shortcuts

Source code for ignite.contrib.handlers.tqdm_logger

# -*- coding: utf-8 -*-
"""TQDM logger."""
import numbers
import warnings
from collections import OrderedDict
from typing import Any, Callable, Dict, List, Optional, Union

import torch

from ignite.contrib.handlers.base_logger import BaseLogger, BaseOutputHandler
from ignite.engine import Engine, Events
from ignite.engine.events import CallableEventWithFilter, RemovableEventHandle


[docs]class ProgressBar(BaseLogger): """ TQDM progress bar handler to log training progress and computed metrics. Args: persist: set to ``True`` to persist the progress bar after completion (default = ``False``) bar_format : Specify a custom bar string formatting. May impact performance. [default: '{desc}[{n_fmt}/{total_fmt}] {percentage:3.0f}%|{bar}{postfix} [{elapsed}<{remaining}]']. Set to ``None`` to use ``tqdm`` default bar formatting: '{l_bar}{bar}{r_bar}', where l_bar='{desc}: {percentage:3.0f}%|' and r_bar='| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'. For more details on the formatting, see `tqdm docs <https://tqdm.github.io/docs/tqdm/>`_. tqdm_kwargs: kwargs passed to tqdm progress bar. By default, progress bar description displays "Epoch [5/10]" where 5 is the current epoch and 10 is the number of epochs; however, if ``max_epochs`` are set to 1, the progress bar instead displays "Iteration: [5/10]". If tqdm_kwargs defines `desc`, e.g. "Predictions", than the description is "Predictions [5/10]" if number of epochs is more than one otherwise it is simply "Predictions". Examples: Simple progress bar .. code-block:: python trainer = create_supervised_trainer(model, optimizer, loss) pbar = ProgressBar() pbar.attach(trainer) # Progress bar will looks like # Epoch [2/50]: [64/128] 50%|█████ [06:17<12:34] Log output to a file instead of stderr (tqdm's default output) .. code-block:: python trainer = create_supervised_trainer(model, optimizer, loss) log_file = open("output.log", "w") pbar = ProgressBar(file=log_file) pbar.attach(trainer) Attach metrics that already have been computed at :attr:`~ignite.engine.events.Events.ITERATION_COMPLETED` (such as :class:`~ignite.metrics.RunningAverage`) .. code-block:: python trainer = create_supervised_trainer(model, optimizer, loss) RunningAverage(output_transform=lambda x: x).attach(trainer, 'loss') pbar = ProgressBar() pbar.attach(trainer, ['loss']) # Progress bar will looks like # Epoch [2/50]: [64/128] 50%|█████ , loss=0.123 [06:17<12:34] Directly attach the engine's output .. code-block:: python trainer = create_supervised_trainer(model, optimizer, loss) pbar = ProgressBar() pbar.attach(trainer, output_transform=lambda x: {'loss': x}) # Progress bar will looks like # Epoch [2/50]: [64/128] 50%|█████ , loss=0.123 [06:17<12:34] Note: When adding attaching the progress bar to an engine, it is recommend that you replace every print operation in the engine's handlers triggered every iteration with ``pbar.log_message`` to guarantee the correct format of the stdout. Note: When using inside jupyter notebook, `ProgressBar` automatically uses `tqdm_notebook`. For correct rendering, please install `ipywidgets <https://ipywidgets.readthedocs.io/en/stable/user_install.html#installation>`_. Due to `tqdm notebook bugs <https://github.com/tqdm/tqdm/issues/594>`_, bar format may be needed to be set to an empty string value. """ _events_order = [ Events.STARTED, Events.EPOCH_STARTED, Events.ITERATION_STARTED, Events.ITERATION_COMPLETED, Events.EPOCH_COMPLETED, Events.COMPLETED, ] # type: List[Union[Events, CallableEventWithFilter]] def __init__( self, persist: bool = False, bar_format: str = "{desc}[{n_fmt}/{total_fmt}] {percentage:3.0f}%|{bar}{postfix} [{elapsed}<{remaining}]", **tqdm_kwargs: Any, ): try: from tqdm.autonotebook import tqdm except ImportError: raise RuntimeError( "This contrib module requires tqdm to be installed. " "Please install it with command: \n pip install tqdm" ) self.pbar_cls = tqdm self.pbar = None self.persist = persist self.bar_format = bar_format self.tqdm_kwargs = tqdm_kwargs def _reset(self, pbar_total: Optional[int]) -> None: self.pbar = self.pbar_cls( total=pbar_total, leave=self.persist, bar_format=self.bar_format, initial=1, **self.tqdm_kwargs ) def _close(self, engine: Engine) -> None: if self.pbar is not None: # https://github.com/tqdm/notebook.py#L240-L250 # issue #1115 : notebook backend of tqdm checks if n < total (error or KeyboardInterrupt) # and the bar persists in 'danger' mode if self.pbar.total is not None: self.pbar.n = self.pbar.total self.pbar.close() self.pbar = None @staticmethod def _compare_lt( event1: Union[Events, CallableEventWithFilter], event2: Union[Events, CallableEventWithFilter] ) -> bool: i1 = ProgressBar._events_order.index(event1) i2 = ProgressBar._events_order.index(event2) return i1 < i2
[docs] def log_message(self, message: str) -> None: """ Logs a message, preserving the progress bar correct output format. Args: message: string you wish to log. """ from tqdm import tqdm tqdm.write(message, file=self.tqdm_kwargs.get("file", None))
[docs] def attach( # type: ignore[override] self, engine: Engine, metric_names: Optional[Union[str, List[str]]] = None, output_transform: Optional[Callable] = None, event_name: Union[Events, CallableEventWithFilter] = Events.ITERATION_COMPLETED, closing_event_name: Union[Events, CallableEventWithFilter] = Events.EPOCH_COMPLETED, ) -> None: """ Attaches the progress bar to an engine object. Args: engine: engine object. metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: a function to select what you want to print from the engine's output. This function may return either a dictionary with entries in the format of ``{name: value}``, or a single scalar, which will be displayed with the default name `output`. event_name: event's name on which the progress bar advances. Valid events are from :class:`~ignite.engine.events.Events`. closing_event_name: event's name on which the progress bar is closed. Valid events are from :class:`~ignite.engine.events.Events`. Note: Accepted output value types are numbers, 0d and 1d torch tensors and strings. """ desc = self.tqdm_kwargs.get("desc", None) if event_name not in engine._allowed_events: raise ValueError(f"Logging event {event_name.name} is not in allowed events for this engine") if isinstance(closing_event_name, CallableEventWithFilter): if closing_event_name.filter != CallableEventWithFilter.default_event_filter: raise ValueError("Closing Event should not be a filtered event") if not self._compare_lt(event_name, closing_event_name): raise ValueError(f"Logging event {event_name} should be called before closing event {closing_event_name}") log_handler = _OutputHandler(desc, metric_names, output_transform, closing_event_name=closing_event_name) super(ProgressBar, self).attach(engine, log_handler, event_name) engine.add_event_handler(closing_event_name, self._close)
[docs] def attach_opt_params_handler( self, engine: Engine, event_name: Union[str, Events], *args: Any, **kwargs: Any ) -> RemovableEventHandle: """Intentionally empty""" pass
def _create_output_handler(self, *args: Any, **kwargs: Any) -> "_OutputHandler": return _OutputHandler(*args, **kwargs) def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> Callable: """Intentionally empty""" pass
class _OutputHandler(BaseOutputHandler): """Helper handler to log engine's output and/or metrics Args: description: progress bar description. metric_names: list of metric names to plot or a string "all" to plot all available metrics. output_transform: output transform function to prepare `engine.state.output` as a number. For example, `output_transform = lambda output: output` This function can also return a dictionary, e.g `{'loss': loss1, 'another_loss': loss2}` to label the plot with corresponding keys. closing_event_name: event's name on which the progress bar is closed. Valid events are from :class:`~ignite.engine.events.Events` or any `event_name` added by :meth:`~ignite.engine.engine.Engine.register_events`. """ def __init__( self, description: str, metric_names: Optional[Union[str, List[str]]] = None, output_transform: Optional[Callable] = None, closing_event_name: Union[Events, CallableEventWithFilter] = Events.EPOCH_COMPLETED, ): if metric_names is None and output_transform is None: # This helps to avoid 'Either metric_names or output_transform should be defined' of BaseOutputHandler metric_names = [] super(_OutputHandler, self).__init__(description, metric_names, output_transform, global_step_transform=None) self.closing_event_name = closing_event_name @staticmethod def get_max_number_events(event_name: Union[str, Events, CallableEventWithFilter], engine: Engine) -> Optional[int]: if event_name in (Events.ITERATION_STARTED, Events.ITERATION_COMPLETED): return engine.state.epoch_length if event_name in (Events.EPOCH_STARTED, Events.EPOCH_COMPLETED): return engine.state.max_epochs return 1 def __call__(self, engine: Engine, logger: ProgressBar, event_name: Union[str, Events]) -> None: pbar_total = self.get_max_number_events(event_name, engine) if logger.pbar is None: logger._reset(pbar_total=pbar_total) max_epochs = engine.state.max_epochs default_desc = "Iteration" if max_epochs == 1 else "Epoch" desc = self.tag or default_desc max_num_of_closing_events = self.get_max_number_events(self.closing_event_name, engine) if max_num_of_closing_events and max_num_of_closing_events > 1: global_step = engine.state.get_event_attrib_value(self.closing_event_name) desc += f" [{global_step}/{max_num_of_closing_events}]" logger.pbar.set_description(desc) # type: ignore[attr-defined] metrics = self._setup_output_metrics(engine) rendered_metrics = OrderedDict() # type: Dict[str, Union[str, float, numbers.Number]] for key, value in metrics.items(): if isinstance(value, numbers.Number) or isinstance(value, str): rendered_metrics[key] = value elif isinstance(value, torch.Tensor) and value.ndimension() == 0: rendered_metrics[key] = value.item() elif isinstance(value, torch.Tensor) and value.ndimension() == 1: for i, v in enumerate(value): k = f"{key}_{i}" rendered_metrics[k] = v.item() else: warnings.warn(f"ProgressBar can not log tensor with {value.ndimension()} dimensions") if rendered_metrics: logger.pbar.set_postfix(rendered_metrics) # type: ignore[attr-defined] global_step = engine.state.get_event_attrib_value(event_name) if pbar_total is not None: global_step = (global_step - 1) % pbar_total + 1 logger.pbar.update(global_step - logger.pbar.n) # type: ignore[attr-defined]

© Copyright 2024, PyTorch-Ignite Contributors. Last updated on 12/09/2024, 2:10:02 PM.

Built with Sphinx using a theme provided by Read the Docs.