ignite.handlers#
Complete list of handlers#
Checkpoint handler can be used to periodically save and load objects which have attribute |
|
Handler that saves input checkpoint on a disk. |
|
ModelCheckpoint handler can be used to periodically save objects to disk only. |
|
Exponential moving average (EMA) handler can be used to compute a smoothed version of model. |
|
EarlyStopping handler can be used to stop the training if no improvement after a given number of events. |
|
Learning rate finder handler for supervised trainers. |
|
TerminateOnNan handler can be used to stop the training if the process_function's output contains a NaN or infinite number or torch.tensor. |
|
TimeLimit handler can be used to control training time for computing environments where session time is limited. |
|
Timer object can be used to measure (average) time between events. |
|
Helper method to setup global_step_transform function using another engine. |
|
EpochOutputStore handler to save output prediction and target history after every epoch, could be useful for e.g., visualization purposes. |
Base class for save handlers |
|
An abstract class for updating an optimizer's parameter value during training. |
Parameter scheduler#
Concat a list of parameter schedulers. |
|
Anneals 'start_value' to 'end_value' over each cycle. |
|
An abstract class for updating an optimizer's parameter value over a cycle of some size. |
|
A wrapper class to call torch.optim.lr_scheduler objects as ignite handlers. |
|
Linearly adjusts param value to 'end_value' for a half-cycle, then linearly adjusts it back to 'start_value' for a half-cycle. |
|
Scheduler helper to group multiple schedulers into one. |
|
An abstract class for updating an optimizer's parameter value during training. |
|
Piecewise linear parameter scheduler |
|
Helper method to create a learning rate scheduler with a linear warm-up. |
More on parameter scheduling#
In this section there are visual examples of various parameter schedulings that can be achieved.
Example with CosineAnnealingScheduler
#
import numpy as np
import matplotlib.pylab as plt
from ignite.handlers import CosineAnnealingScheduler
lr_values_1 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr',
start_value=1e-1, end_value=2e-2, cycle_size=20))
lr_values_2 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr',
start_value=1e-1, end_value=2e-2, cycle_size=20, cycle_mult=1.3))
lr_values_3 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr',
start_value=1e-1, end_value=2e-2,
cycle_size=20, start_value_mult=0.7))
lr_values_4 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr',
start_value=1e-1, end_value=2e-2,
cycle_size=20, end_value_mult=0.1))
plt.figure(figsize=(25, 5))
plt.subplot(141)
plt.title("Cosine annealing")
plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.ylim([0.0, 0.12])
plt.subplot(142)
plt.title("Cosine annealing with cycle_mult=1.3")
plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.ylim([0.0, 0.12])
plt.subplot(143)
plt.title("Cosine annealing with start_value_mult=0.7")
plt.plot(lr_values_3[:, 0], lr_values_3[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.ylim([0.0, 0.12])
plt.subplot(144)
plt.title("Cosine annealing with end_value_mult=0.1")
plt.plot(lr_values_4[:, 0], lr_values_4[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.ylim([0.0, 0.12])
Example with ignite.handlers.param_scheduler.LinearCyclicalScheduler
#
import numpy as np
import matplotlib.pylab as plt
from ignite.handlers import LinearCyclicalScheduler
lr_values_1 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr',
start_value=1e-1, end_value=2e-2, cycle_size=20))
lr_values_2 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr',
start_value=1e-1, end_value=2e-2, cycle_size=20, cycle_mult=1.3))
lr_values_3 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr',
start_value=1e-1, end_value=2e-2,
cycle_size=20, start_value_mult=0.7))
lr_values_4 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr',
start_value=1e-1, end_value=2e-2,
cycle_size=20, end_value_mult=0.1))
plt.figure(figsize=(25, 5))
plt.subplot(141)
plt.title("Linear cyclical scheduler")
plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.ylim([0.0, 0.12])
plt.subplot(142)
plt.title("Linear cyclical scheduler with cycle_mult=1.3")
plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.ylim([0.0, 0.12])
plt.subplot(143)
plt.title("Linear cyclical scheduler with start_value_mult=0.7")
plt.plot(lr_values_3[:, 0], lr_values_3[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.ylim([0.0, 0.12])
plt.subplot(144)
plt.title("Linear cyclical scheduler with end_value_mult=0.1")
plt.plot(lr_values_4[:, 0], lr_values_4[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.ylim([0.0, 0.12])
Example with ignite.handlers.param_scheduler.ConcatScheduler
#
import numpy as np
import matplotlib.pylab as plt
from ignite.handlers import LinearCyclicalScheduler, CosineAnnealingScheduler, ConcatScheduler
import torch
t1 = torch.zeros([1], requires_grad=True)
optimizer = torch.optim.SGD([t1], lr=0.1)
scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.1, end_value=0.5, cycle_size=30)
scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.5, end_value=0.01, cycle_size=50)
durations = [15, ]
lr_values_1 = np.array(ConcatScheduler.simulate_values(num_events=100, schedulers=[scheduler_1, scheduler_2], durations=durations))
t1 = torch.zeros([1], requires_grad=True)
optimizer = torch.optim.SGD([t1], lr=0.1)
scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.1, end_value=0.5, cycle_size=30)
scheduler_2 = CosineAnnealingScheduler(optimizer, "momentum", start_value=0.5, end_value=0.01, cycle_size=50)
durations = [15, ]
lr_values_2 = np.array(ConcatScheduler.simulate_values(num_events=100, schedulers=[scheduler_1, scheduler_2], durations=durations,
param_names=["lr", "momentum"]))
plt.figure(figsize=(25, 5))
plt.subplot(131)
plt.title("Concat scheduler of linear + cosine annealing")
plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.subplot(132)
plt.title("Concat scheduler of linear LR scheduler\n and cosine annealing on momentum")
plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.subplot(133)
plt.title("Concat scheduler of linear LR scheduler\n and cosine annealing on momentum")
plt.plot(lr_values_2[:, 0], lr_values_2[:, 2], label="momentum")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
Piecewise linear scheduler#
import numpy as np
import matplotlib.pylab as plt
from ignite.handlers import LinearCyclicalScheduler, ConcatScheduler
scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.0, end_value=0.6, cycle_size=50)
scheduler_2 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.6, end_value=0.0, cycle_size=150)
durations = [25, ]
lr_values = np.array(ConcatScheduler.simulate_values(num_events=100, schedulers=[scheduler_1, scheduler_2], durations=durations))
plt.title("Piecewise linear scheduler")
plt.plot(lr_values[:, 0], lr_values[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
Example with ignite.handlers.param_scheduler.LRScheduler
#
import numpy as np
import matplotlib.pylab as plt
from ignite.handlers import LRScheduler
import torch
from torch.optim.lr_scheduler import ExponentialLR, StepLR, CosineAnnealingLR
tensor = torch.zeros([1], requires_grad=True)
optimizer = torch.optim.SGD([tensor], lr=0.1)
lr_scheduler_1 = StepLR(optimizer=optimizer, step_size=10, gamma=0.77)
lr_scheduler_2 = ExponentialLR(optimizer=optimizer, gamma=0.98)
lr_scheduler_3 = CosineAnnealingLR(optimizer=optimizer, T_max=10, eta_min=0.01)
lr_values_1 = np.array(LRScheduler.simulate_values(num_events=100, lr_scheduler=lr_scheduler_1))
lr_values_2 = np.array(LRScheduler.simulate_values(num_events=100, lr_scheduler=lr_scheduler_2))
lr_values_3 = np.array(LRScheduler.simulate_values(num_events=100, lr_scheduler=lr_scheduler_3))
plt.figure(figsize=(25, 5))
plt.subplot(131)
plt.title("Torch LR scheduler wrapping StepLR")
plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.subplot(132)
plt.title("Torch LR scheduler wrapping ExponentialLR")
plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.subplot(133)
plt.title("Torch LR scheduler wrapping CosineAnnealingLR")
plt.plot(lr_values_3[:, 0], lr_values_3[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
Concatenate with torch schedulers#
import numpy as np
import matplotlib.pylab as plt
from ignite.handlers import LRScheduler, ConcatScheduler
import torch
from torch.optim.lr_scheduler import ExponentialLR, StepLR
t1 = torch.zeros([1], requires_grad=True)
optimizer = torch.optim.SGD([t1], lr=0.1)
scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.001, end_value=0.1, cycle_size=30)
lr_scheduler = ExponentialLR(optimizer=optimizer, gamma=0.7)
scheduler_2 = LRScheduler(lr_scheduler=lr_scheduler)
durations = [15, ]
lr_values_1 = np.array(ConcatScheduler.simulate_values(num_events=30, schedulers=[scheduler_1, scheduler_2], durations=durations))
scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.001, end_value=0.1, cycle_size=30)
lr_scheduler = StepLR(optimizer=optimizer, step_size=10, gamma=0.7)
scheduler_2 = LRScheduler(lr_scheduler=lr_scheduler)
durations = [15, ]
lr_values_2 = np.array(ConcatScheduler.simulate_values(num_events=75, schedulers=[scheduler_1, scheduler_2], durations=durations))
plt.figure(figsize=(15, 5))
plt.subplot(121)
plt.title("Concat scheduler of linear + ExponentialLR")
plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()
plt.subplot(122)
plt.title("Concat scheduler of linear + StepLR")
plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate")
plt.xlabel("events")
plt.ylabel("values")
plt.legend()