[docs]classMeanPairwiseDistance(Metric):"""Calculates the mean :class:`~torch.nn.PairwiseDistance`. Average of pairwise distances computed on provided batches. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. Args: p: the norm degree. Default: 2 eps: Small value to avoid division by zero. Default: 1e-6 output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. """def__init__(self,p:int=2,eps:float=1e-6,output_transform:Callable=lambdax:x,device:Union[str,torch.device]=torch.device("cpu"),)->None:super(MeanPairwiseDistance,self).__init__(output_transform,device=device)self._p=pself._eps=eps@reinit__is_reduceddefreset(self)->None:self._sum_of_distances=torch.tensor(0.0,device=self._device)self._num_examples=0@reinit__is_reduceddefupdate(self,output:Sequence[torch.Tensor])->None:y_pred,y=output[0].detach(),output[1].detach()distances=pairwise_distance(y_pred,y,p=self._p,eps=self._eps)self._sum_of_distances+=torch.sum(distances).to(self._device)self._num_examples+=y.shape[0]@sync_all_reduce("_sum_of_distances","_num_examples")defcompute(self)->Union[float,torch.Tensor]:ifself._num_examples==0:raiseNotComputableError("MeanAbsoluteError must have at least one example before it can be computed.")returnself._sum_of_distances.item()/self._num_examples