Shortcuts

Source code for ignite.contrib.metrics.regression.wave_hedges_distance

from typing import Tuple

import torch

from ignite.contrib.metrics.regression._base import _BaseRegression


[docs]class WaveHedgesDistance(_BaseRegression): r"""Calculates the Wave Hedges Distance. .. math:: \text{WHD} = \sum_{j=1}^n\frac{|A_j - P_j|}{max(A_j, P_j)} where, :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 Parameters are inherited from ``Metric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. """ def reset(self) -> None: self._sum_of_errors = 0.0 def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None: y_pred, y = output errors = torch.abs(y.view_as(y_pred) - y_pred) / torch.max(y_pred, y.view_as(y_pred)) self._sum_of_errors += torch.sum(errors).item() def compute(self) -> float: return self._sum_of_errors

© Copyright 2024, PyTorch-Ignite Contributors. Last updated on 04/08/2024, 4:58:12 PM.

Built with Sphinx using a theme provided by Read the Docs.