Shortcuts

visdom_logger#

Visdom logger and its helper handlers.

Classes

GradsScalarHandler

Helper handler to log model's gradients as scalars.

OptimizerParamsHandler

Helper handler to log optimizer parameters

OutputHandler

Helper handler to log engine's output and/or metrics

VisdomLogger

VisdomLogger handler to log metrics, model/optimizer parameters, gradients during the training and validation.

WeightsScalarHandler

Helper handler to log model's weights as scalars.

class ignite.contrib.handlers.visdom_logger.GradsScalarHandler(model, reduction=<function norm>, tag=None, show_legend=False)[source]#

Helper handler to log model’s gradients as scalars. Handler iterates over the gradients of named parameters of the model, applies reduction function to each parameter produce a scalar and then logs the scalar.

Parameters
  • model (Module) – model to log weights

  • reduction (Callable) – function to reduce parameters into scalar

  • tag (Optional[str]) – common title for all produced plots. For example, “generator”

  • show_legend (bool) – flag to show legend in the window

Examples

from ignite.contrib.handlers.visdom_logger import *

# Create a logger
vd_logger = VisdomLogger()

# Attach the logger to the trainer to log model's weights norm after each iteration
vd_logger.attach(
    trainer,
    event_name=Events.ITERATION_COMPLETED,
    log_handler=GradsScalarHandler(model, reduction=torch.norm)
)
class ignite.contrib.handlers.visdom_logger.OptimizerParamsHandler(optimizer, param_name='lr', tag=None, show_legend=False)[source]#

Helper handler to log optimizer parameters

Parameters
  • optimizer (Optimizer) – torch optimizer or any object with attribute param_groups as a sequence.

  • param_name (str) – parameter name

  • tag (Optional[str]) – common title for all produced plots. For example, “generator”

  • show_legend (bool) – flag to show legend in the window

Examples

from ignite.contrib.handlers.visdom_logger import *

# Create a logger
vb_logger = VisdomLogger()

# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
vd_logger.attach(
    trainer,
    log_handler=OptimizerParamsHandler(optimizer),
    event_name=Events.ITERATION_STARTED
)
# or equivalently
vd_logger.attach_opt_params_handler(
    trainer,
    event_name=Events.ITERATION_STARTED,
    optimizer=optimizer
)
class ignite.contrib.handlers.visdom_logger.OutputHandler(tag, metric_names=None, output_transform=None, global_step_transform=None, show_legend=False, state_attributes=None)[source]#

Helper handler to log engine’s output and/or metrics

Parameters
  • tag (str) – common title for all produced plots. For example, “training”

  • metric_names (Optional[str]) – list of metric names to plot or a string “all” to plot all available metrics.

  • output_transform (Optional[Callable]) – output transform function to prepare engine.state.output as a number. For example, output_transform = lambda output: output This function can also return a dictionary, e.g {“loss”: loss1, “another_loss”: loss2} to label the plot with corresponding keys.

  • global_step_transform (Optional[Callable]) – global step transform function to output a desired global step. Input of the function is (engine, event_name). Output of function should be an integer. Default is None, global_step based on attached engine. If provided, uses function output as global_step. To setup global step from another engine, please use global_step_from_engine().

  • show_legend (bool) – flag to show legend in the window

  • state_attributes (Optional[List[str]]) – list of attributes of the trainer.state to plot.

Examples

from ignite.contrib.handlers.visdom_logger import *

# Create a logger
vd_logger = VisdomLogger()

# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer`:
vd_logger.attach(
    evaluator,
    log_handler=OutputHandler(
        tag="validation",
        metric_names=["nll", "accuracy"],
        global_step_transform=global_step_from_engine(trainer)
    ),
    event_name=Events.EPOCH_COMPLETED
)
# or equivalently
vd_logger.attach_output_handler(
    evaluator,
    event_name=Events.EPOCH_COMPLETED,
    tag="validation",
    metric_names=["nll", "accuracy"],
    global_step_transform=global_step_from_engine(trainer)
)

Another example, where model is evaluated every 500 iterations:

from ignite.contrib.handlers.visdom_logger import *

@trainer.on(Events.ITERATION_COMPLETED(every=500))
def evaluate(engine):
    evaluator.run(validation_set, max_epochs=1)

vd_logger = VisdomLogger()

def global_step_transform(*args, **kwargs):
    return trainer.state.iteration

# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# every 500 iterations. Since evaluator engine does not have access to the training iteration, we
# provide a global_step_transform to return the trainer.state.iteration for the global_step, each time
# evaluator metrics are plotted on Visdom.

vd_logger.attach_output_handler(
    evaluator,
    event_name=Events.EPOCH_COMPLETED,
    tag="validation",
    metrics=["nll", "accuracy"],
    global_step_transform=global_step_transform
)

Another example where the State Attributes trainer.state.alpha and trainer.state.beta are also logged along with the NLL and Accuracy after each iteration:

vd_logger.attach(
    trainer,
    log_handler=OutputHandler(
        tag="training",
        metric_names=["nll", "accuracy"],
        state_attributes=["alpha", "beta"],
    ),
    event_name=Events.ITERATION_COMPLETED
)

Example of global_step_transform:

def global_step_transform(engine, event_name):
    return engine.state.get_event_attrib_value(event_name)
class ignite.contrib.handlers.visdom_logger.VisdomLogger(server=None, port=None, num_workers=1, raise_exceptions=True, **kwargs)[source]#

VisdomLogger handler to log metrics, model/optimizer parameters, gradients during the training and validation.

This class requires visdom package to be installed:

pip install git+https://github.com/fossasia/visdom.git
Parameters
  • server (Optional[str]) – visdom server URL. It can be also specified by environment variable VISDOM_SERVER_URL

  • port (Optional[int]) – visdom server’s port. It can be also specified by environment variable VISDOM_PORT

  • num_workers (int) – number of workers to use in concurrent.futures.ThreadPoolExecutor to post data to visdom server. Default, num_workers=1. If num_workers=0 and logger uses the main thread. If using Python 2.7 and num_workers>0 the package futures should be installed: pip install futures

  • kwargs (Any) – kwargs to pass into visdom.Visdom.

  • raise_exceptions (bool) –

Note

We can also specify username/password using environment variables: VISDOM_USERNAME, VISDOM_PASSWORD

Warning

Frequent logging, e.g. when logger is attached to Events.ITERATION_COMPLETED, can slow down the run if the main thread is used to send the data to visdom server (num_workers=0). To avoid this situation we can either log less frequently or set num_workers=1.

Examples

from ignite.contrib.handlers.visdom_logger import *

# Create a logger
vd_logger = VisdomLogger()

# Attach the logger to the trainer to log training loss at each iteration
vd_logger.attach_output_handler(
    trainer,
    event_name=Events.ITERATION_COMPLETED,
    tag="training",
    output_transform=lambda loss: {"loss": loss}
)

# Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch
# We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer` instead of `train_evaluator`.
vd_logger.attach_output_handler(
    train_evaluator,
    event_name=Events.EPOCH_COMPLETED,
    tag="training",
    metric_names=["nll", "accuracy"],
    global_step_transform=global_step_from_engine(trainer),
)

# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the
# `trainer` instead of `evaluator`.
vd_logger.attach_output_handler(
    evaluator,
    event_name=Events.EPOCH_COMPLETED,
    tag="validation",
    metric_names=["nll", "accuracy"],
    global_step_transform=global_step_from_engine(trainer)),
)

# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
vd_logger.attach_opt_params_handler(
    trainer,
    event_name=Events.ITERATION_STARTED,
    optimizer=optimizer,
    param_name='lr'  # optional
)

# Attach the logger to the trainer to log model's weights norm after each iteration
vd_logger.attach(
    trainer,
    event_name=Events.ITERATION_COMPLETED,
    log_handler=WeightsScalarHandler(model)
)

# Attach the logger to the trainer to log model's gradients norm after each iteration
vd_logger.attach(
    trainer,
    event_name=Events.ITERATION_COMPLETED,
    log_handler=GradsScalarHandler(model)
)

# We need to close the logger with we are done
vd_logger.close()

It is also possible to use the logger as context manager:

from ignite.contrib.handlers.visdom_logger import *

with VisdomLogger() as vd_logger:

    trainer = Engine(update_fn)
    # Attach the logger to the trainer to log training loss at each iteration
    vd_logger.attach_output_handler(
        trainer,
        event_name=Events.ITERATION_COMPLETED,
        tag="training",
        output_transform=lambda loss: {"loss": loss}
    )

Changed in version 0.4.7: accepts an optional list of state_attributes

class ignite.contrib.handlers.visdom_logger.WeightsScalarHandler(model, reduction=<function norm>, tag=None, show_legend=False)[source]#

Helper handler to log model’s weights as scalars. Handler iterates over named parameters of the model, applies reduction function to each parameter produce a scalar and then logs the scalar.

Parameters
  • model (Module) – model to log weights

  • reduction (Callable) – function to reduce parameters into scalar

  • tag (Optional[str]) – common title for all produced plots. For example, “generator”

  • show_legend (bool) – flag to show legend in the window

Examples

from ignite.contrib.handlers.visdom_logger import *

# Create a logger
vd_logger = VisdomLogger()

# Attach the logger to the trainer to log model's weights norm after each iteration
vd_logger.attach(
    trainer,
    event_name=Events.ITERATION_COMPLETED,
    log_handler=WeightsScalarHandler(model, reduction=torch.norm)
)
ignite.contrib.handlers.visdom_logger.global_step_from_engine(engine, custom_event_name=None)[source]#

Helper method to setup global_step_transform function using another engine. This can be helpful for logging trainer epoch/iteration while output handler is attached to an evaluator.

Parameters
  • engine (Engine) – engine which state is used to provide the global step

  • custom_event_name (Optional[Events]) – registered event name. Optional argument, event name to use.

Returns

global step based on provided engine

Return type

Callable