Source code for ignite.metrics.fbeta
from typing import Callable, Optional, Union
import torch
from ignite.metrics.metrics_lambda import MetricsLambda
from ignite.metrics.precision import Precision
from ignite.metrics.recall import Recall
__all__ = ["Fbeta"]
[docs]def Fbeta(
beta: float,
average: bool = True,
precision: Optional[Precision] = None,
recall: Optional[Recall] = None,
output_transform: Optional[Callable] = None,
device: Optional[Union[str, torch.device]] = None,
) -> MetricsLambda:
"""Calculates F-beta score
Args:
beta (float): weight of precision in harmonic mean
average (bool, optional): if True, F-beta score is computed as the unweighted average (across all classes
in multiclass case), otherwise, returns a tensor with F-beta score for each class in multiclass case.
precision (Precision, optional): precision object metric with `average=False` to compute F-beta score
recall (Precision, optional): recall object metric with `average=False` to compute F-beta score
output_transform (callable, optional): a callable that is used to transform the
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
form expected by the metric. It is used only if precision or recall are not provided.
device (str of torch.device, optional): optional device specification for internal storage.
Returns:
MetricsLambda, F-beta metric
"""
if not (beta > 0):
raise ValueError("Beta should be a positive integer, but given {}".format(beta))
if precision is not None and output_transform is not None:
raise ValueError("If precision argument is provided, output_transform should be None")
if recall is not None and output_transform is not None:
raise ValueError("If recall argument is provided, output_transform should be None")
if precision is None:
precision = Precision(
output_transform=(lambda x: x) if output_transform is None else output_transform,
average=False,
device=device,
)
elif precision._average:
raise ValueError("Input precision metric should have average=False")
if recall is None:
recall = Recall(
output_transform=(lambda x: x) if output_transform is None else output_transform,
average=False,
device=device,
)
elif recall._average:
raise ValueError("Input recall metric should have average=False")
fbeta = (1.0 + beta ** 2) * precision * recall / (beta ** 2 * precision + recall + 1e-15)
if average:
fbeta = fbeta.mean().item()
return fbeta