Source code for ignite.metrics.top_k_categorical_accuracy

from __future__ import division

import torch

from ignite.metrics.metric import Metric
from ignite.exceptions import NotComputableError
from ignite.metrics.metric import sync_all_reduce, reinit__is_reduced

[docs]class TopKCategoricalAccuracy(Metric): """ Calculates the top-k categorical accuracy. - `update` must receive output of the form `(y_pred, y)` or `{'y_pred': y_pred, 'y': y}`. """ def __init__(self, k=5, output_transform=lambda x: x, device=None): super(TopKCategoricalAccuracy, self).__init__(output_transform, device=device) self._k = k @reinit__is_reduced def reset(self): self._num_correct = 0 self._num_examples = 0 @reinit__is_reduced def update(self, output): y_pred, y = output sorted_indices = torch.topk(y_pred, self._k, dim=1)[1] expanded_y = y.view(-1, 1).expand(-1, self._k) correct = torch.sum(torch.eq(sorted_indices, expanded_y), dim=1) self._num_correct += torch.sum(correct).item() self._num_examples += correct.shape[0] @sync_all_reduce("_num_correct", "_num_examples") def compute(self): if self._num_examples == 0: raise NotComputableError("TopKCategoricalAccuracy must have at" "least one example before it can be computed.") return self._num_correct / self._num_examples

© Copyright 2023, PyTorch-Ignite Contributors. Last updated on 12/04/2023, 3:00:00 PM.

Built with Sphinx using a theme provided by Read the Docs.